第1篇 五年级数学上册《解决问题策略(列举)》评课稿
五年级数学上册《解决问题策略(列举)》评课稿1
一、优点:
1、整个教学过程清晰完整,符合解决问题课型特征。
从现实情境出发,让学生思考如何用22根围一个长方形,引出按一定的顺序进行思考尝试,即有序列举,再探究这样列举的好处,即不遗漏不重复。然后比较得出长与宽最接近时面积最大,解决问题。最后引导学生进行回顾与反思,并联系以前学过用过的列举方法,更进一步深化了这一策略。
这里学生经历了理解题意、寻找方法、发现策略、反思策略、运用策略的过程,较好地体现了解决问题课型的流程与特征。
2、课件、板书清晰有效,较好地发挥了辅助作用。
本课的课件制作较为精细,充分发挥ppt的优点,特别是几种不同长宽的长方形呈现,让学生清楚的看出面积与长与宽的直观关系,降低理解地难度。板书设计也较为合理,该写的写(那张表格、有序不遗漏不重复等关键词),该省的省,体现了让重难点留在最重要的位置的宗旨。
3、教师语言相对精练,问题设计较为合理。
本课中教师的话虽不少,但不算罗嗦,比如说:22根是它的什么?列举时一般要从小的数开始。有序的列举有什么好处?周长相等的情况下……为什么到16:20就停了?理解“每两天”的意思等等。当然也有时学生可以说的,老师可能急了点,把学生的话讲了。
二、建议:
1、充分理解教材调整的意图,为何将原来的18根改为22根?为何将原来列举结束后再问的“怎样围最大”直接放在题目中出示?22根相对于18根,可能会让学生更容易想到从1想起,因为11=10+1。而将问题早揭示,更体现策略的价值,我们为什么要一一列举?是为了解决问题,正是因为有序列举后,使得长宽与面积的关系更清楚,更利于寻找规律。
2、回顾与反思还可进一步。除了要回顾解决问题的过程,反思一一列举策略的好处,还应引导学生思考,什么情况下使用该种策略?
3、最后一题还可以进行挖掘。我们可以用一一列举的方法找出答案,在列举的过程中也应优化,既可写中文,也可用字母或其他符号表示,更可体现策略的优越性。同时也培养了符号意识,让学生理解,在以后解决其他问题进行列举时也可采用符号化的方法。
总体而言,在一个基础不是很好的班级执教这样颇具思考性的内容,达成令人满意的效果,可以看出教师课前课中的投入。
五年级数学上册《解决问题策略(列举)》评课稿2
今天上午听了校级研究课卢老师的执教的《解决问题的策略——列举》感触很深。
无论是卢老师精心的教学设计,巧妙的课堂构思,还是学生的积极配合,踊跃发言都给我们留下了深刻的印象。
在下午的集体备课中,很多老师都提到了卢老师类似的优点,这里不再多说,只是想和大家分享一下听完这堂课后的一些困惑和想法。
1、本课的教学重难点是让学生理解一一列举的方法,并能主动运用这种方法来解决生活中的一些问题。首先,我认为让学生明白为什么我们要用一一列举的策略来解决问题是最重要的。教学中,教师所呈现给学生的几道例题:如用18跟栅栏围长方形,有几种围法?订阅3种书籍的`不同订法……都需要首先让孩子明白为什么我们要选择一一列举的策略,选择其他方法容易出现什么问题?这一点卢老师做的比较到位,她通过展示了几位同学的作业情况,让孩子自己发现问题,有的答案重复了,有的答案遗漏了,为了防止类似的情况发生,接着卢老师顺其自然的提到了一一列举法,让孩子在遇到问题和困扰后接受起来比较容易些。
2、本课的第二个重点是教孩子如何使用一一列举法?使用一一列举法书上主要是列表法。这种方法虽然可以但不实用。一、上课时孩子没有时间去画表格。二、这种方法相对来说不是最方便和最容易让孩子接受的。在教学例2时,订阅3种书籍有几种方法呢?卢老师让孩子放手自己去解决。结果让人惊喜,大部分孩子解决起来毫无困难,甚至还有相当一部分孩子已经想到了用字母或者数字来代替书籍的名字来列举。这种方式简洁明了,通俗易懂,最重要的是孩子自己动脑思考的结果,不得不让在场听课的老师为之惊叹。看来放手让孩子去做,有时确实能够获得意外的惊喜。听到这里,我不禁要问,既然孩子最易接受用符号来列举的方法,那书上介绍的列表法是否可以不讲或者略讲呢?
3、例3是道关于投镖的问题。标靶上有3种情况,10环,8环和6环。投2次得到的总环数会有几种情况?在这里,卢老师和学生一起探讨了4种情况:一、两次投中的环数相同。二、两次投中的环数不同。三、一次投中一次未投中。四、两次都未投中。我个人认为分为四类不太恰当,应该分成三类较清楚,第一种和第二种情况完全可以合二为一,其实说的就是两次都投中的情况,只不过在这个前提下再细分为两类而已。这样分类讲起来可能才更加清楚点。
4、投标的结果出现了重复。如8+8=16,10+6=16,这两种情况尽管答案相同,但表示的意思是不一样的,教师在讲解的时候一定要注意讲清楚。为了防止学生的答案写的不清楚,在答时也应建议学生将所有的答案有序排列,这样才能做到不重复,不遗漏。
以上是我听完课后一些不成熟的想法,希望能够与大家分享,还望批评指正,共同学习!
第2篇 表格列举法解决问题评课稿
表格列举法解决问题评课稿
本节课思路清晰,目标明确。学生在探索解决递增递减问题的过程中,独立思考和合作探索,轻松地学会了用表格列举法来解决问题,进而形成运用表格列举的方法解决问题的策略。这节课有很多值得我们借鉴的地方。
1、导入亲切自然。在上课伊始,教师以学生熟悉的植树活动为素材引入,接着出示了欢欢等4名同学在为小树立警示牌,保护家园的情境图,能吸引学生极投入到探索活动中。
2、注重培养学生分析解决问题的能力。一年级学生理解问题有困难,而这又是学生第一次接触递增递减的问题。康老师出示题目后没有直接让学生去解决问题,而是先引导学生理解题目中的关键句,分析问题。出示问题后,老师:以后每年比前一年多种一棵树什么意思?生:意思就是8岁种了1棵树,9岁那年种了2棵,10岁那一年种了3棵,11岁种了4棵树。教师又问:欢欢种树是从几岁到几岁?具体哪几岁?这两个问题很好的'帮助了学生理解问题,也培养了分析问题的能力。
3、给学生足够的思考、交流空间。
数学思考是数学教学的核心。在解决问题环节,教师先让学生独立思考、交流解决问题的方法,教师再梳理,精心设计问题进一步引发思考,再总结,引入表格列举法。既让学生体会了表格列举法的优越性,也学会有序地思考问题。
4、练习环节的设计,教师也费了很多心思,尤其是练习二的设计。学生很容易混淆“第五天”和“五天”两个概念,教师把这两者在一个问题中同时出现,学生通过对比,印象会深刻。
个人觉得不足之处有:
1、针对低年级学生,练习题有些多。以至于后面没时间进行回顾反思,交流评价。我觉得练习中一个递增问题,一个递减问题就可以了,这样就能腾出时间引导学生对本节课知识以及方法进行梳理,做到融会贯通。
2、在处理练习题时,教师只是让学生展示了算式。这时教师再让学生说说每一个加数是什么?怎么算的?学生对这种递增、递减求和的问题理解的会更深刻一些。
第3篇 五年级数学《解决问题策略-列举》评课稿
五年级数学《解决问题策略-列举》评课稿
今天上午听了校级研究课卢**老师的执教的《解决问题的策略——列举》感触很深。
无论是卢老师精心的教学设计,巧妙的课堂构思,还是学生的积极配合,踊跃发言都给我们留下了深刻的印象。
在下午的集体备课中,很多老师都提到了卢老师类似的优点,这里不再多说,只是想和大家分享一下听完这堂课后的一些困惑和想法。
1、本课的教学重难点是让学生理解一一列举的方法,并能主动运用这种方法来解决生活中的一些问题。首先,我认为让学生明白为什么我们要用一一列举的策略来解决问题是最重要的。教学中,教师所呈现给学生的几道例题:如用18跟栅栏围长方形,有几种围法?订阅3种书籍的不同订法……都需要首先让孩子明白为什么我们要选择一一列举的策略,选择其他方法容易出现什么问题?这一点卢老师做的比较到位,她通过展示了几位同学的作业情况,让孩子自己发现问题,有的答案重复了,有的答案遗漏了,为了防止类似的情况发生,接着卢老师顺其自然的提到了一一列举法,让孩子在遇到问题和困扰后接受起来比较容易些。
2、本课的第二个重点是教孩子如何使用一一列举法?使用一一列举法书上主要是列表法。这种方法虽然可以但不实用。一、上课时孩子没有时间去画表格。二、这种方法相对来说不是最方便和最容易让孩子接受的。在教学例2时,订阅3种书籍有几种方法呢?卢老师让孩子放手自己去解决。结果让人惊喜,大部分孩子解决起来毫无困难,甚至还有相当一部分孩子已经想到了用字母或者数字来代替书籍的名字来列举。这种方式简洁明了,通俗易懂,最重要的是孩子自己动脑思考的结果,不得不让在场听课的老师为之惊叹。看来放手让孩子去做,有时确实能够获得意外的惊喜。听到这里,我不禁要问,既然孩子最易接受用符号来列举的方法,那书上介绍的列表法是否可以不讲或者略讲呢?
3、例3是道关于投镖的问题。标靶上有3种情况,10环,8环和6环。投2次得到的总环数会有几种情况?在这里,卢老师和学生一起探讨了4种情况:一、两次投中的`环数相同。二、两次投中的环数不同。三、一次投中一次未投中。四、两次都未投中。我个人认为分为四类不太恰当,应该分成三类较清楚,第一种和第二种情况完全可以合二为一,其实说的就是两次都投中的情况,只不过在这个前提下再细分为两类而已。这样分类讲起来可能才更加清楚点。
4、投标的结果出现了重复。如8+8=16,10+6=16,这两种情况尽管答案相同,但表示的意思是不一样的,教师在讲解的时候一定要注意讲清楚。为了防止学生的答案写的不清楚,在答时也应建议学生将所有的答案有序排列,这样才能做到不重复,不遗漏。
以上是我听完课后一些不成熟的想法,希望能够与大家分享,还望批评指正,共同学习!
5位用户关注