管理者范文网 > 安全管理 > 安全管理 > 安全技术
栏目

石油化工安全技术15篇

发布时间:2022-11-28 热度:88

石油化工安全技术

第1篇 石油化工工艺过程防爆安全技术

石油化工行业和其他行业相比,在防爆方面有着特殊的重要性。这主要由其生产特点决定的。

a、石油化工行业爆炸源多,如原料、中间体、成品大多数都是易燃、易爆物质;同时,生产过程中的点火源很多,如明火、电火花、静电火花都可能成为爆炸的点 火源。易燃、易爆物质或其蒸汽和氧气等助燃性气体混合达到一定的比例形成的混合气体遇点火源发生爆炸时,其破坏程度不亚于烈性炸药的威力,这一特点,决定 了石油化工行业的防火防爆工作的艰巨性。

b、石油化工生产具有高温、高压、深冷冻的特点,并且多数介质具有较强的腐蚀性,加上温度应力,交变应力等的作用,受压容器、设备常常因此而遭到破坏,从而引起泄漏,造成大面积火灾和爆炸事故。

c、石油化工生产具有高度自动化、密闭化、连续化的特点。生产工艺条件日趋苛刻,操作要求严格,加之新老设备并存,多数设备已运行多年,可靠性下降,容易发生恶性爆炸事故。

d、石油化工工业发展迅速,生产规模不断扩大,加上对新工艺、新技术的爆炸危险性认识不足,防爆设计不完善等,运行中发生爆炸事故损失将十分严重。

氧化、还原

1、氧化反应

氧化反应需要加热,反应过程又会放热,特别是催化气相氧化反应一般都是在250~600℃的高温下进行。有的物质的氧化,如氨在空气中的氧化和甲醇蒸气在空气中的氧化,其物料配比接近于爆炸下限,倘若配比失调,温度控制不当,极易爆炸起火。

某些氧化过程中还可能生成危险性较大的过氧化物,如乙醛氧化生产醋酸的过程中有过醋酸生成,性质极不稳定,受高温、摩擦或撞击便会分解或燃烧。

对某些强氧化剂,如高锰酸钾、氯酸钾、铬酸酐等,由于其有很强的助燃性,遇高温或受撞击、摩擦以及与有机物、酸类接触,皆能引起燃烧或爆炸。

氧化过程中,在以空气为氧化剂时,反应物料的配比(反应可燃气体和空气的混合比例)应控制在爆炸极限范围之外,空气进入反应器之前,应经过气体净化装置,清除空气中的灰尘、水汽、油污以及可使催化剂活性降低或中毒的杂质以保持催化剂的活性,减少着火和爆炸的危险。

在催化氧化过程中,对于放热反应,应控制适宜的温度、流量,防止超温超压和混合气处于爆炸极限范围。

为了防止接触器在万一发生爆炸或燃烧时危及人身和设备安全,在反应器前后管道上应安装阻火器,阻止火焰蔓延,防止回火,使燃烧不致影响其他系统。为了防止接触器发生爆炸,应有泄压装置。应尽可能采用自动控制或调节,以及警报联锁装置。使用硝酸、高锰酸钾等氧化剂时,要严格控制加料速度,防止多加、错加。固体氧化剂应该粉碎后使用,最好呈溶液状态使用。反应中要不间断地搅拌。

使用氧化剂氧化无机物,如使用氯酸钾生产铁蓝颜料时,应控制产品烘干温度不超过燃点,在烘干之前用清水洗涤产品,将氧化剂彻底除净,防止未起反应的氯酸钾 引起已烘干的物料起火。有些有机化合物的氧化,特别是在高温下的氧化反应,在设备及管道内可能产生焦状物,应及时清除以防自燃。

氧化反应系统宜设置氮气或水蒸气灭火装置。

2、还原反应

还原反应有的比较安全,但是有几种还原反应危险性较大,如初生态氢还原和催化加氢还原等均较危险。无论是利用初生态氢还原,还是用触媒把氢气活化后还原, 都有氢气存在,氢气的爆炸极限为4%~75%。特别是催化加氢,大都在加热加压条件下进行,如果操作失误或因设备缺陷有氢气泄漏,与空气形成爆炸气体混合 物,遇上火源即能爆炸。操作过程中要严格控制温度、压力和流量;车间内的电气设备必须符合该爆炸危险区域内的防爆要求,且不宜在车间顶部敷设电线及安装电 线接线箱;厂房通风要好,采用轻质屋顶,设置天窗或风帽,使氢气及时逸出;反应中产生的氢气可用排气管导出车间屋顶,经过阻火器向外排放;加压反应的设备 要配备安全阀,反应中产生压力的设备要装设爆破板;还可以安装氢气检测和报警装置。

雷内镍吸潮后在空气中有自燃危险,即使没有火源存在,也能使氢气和空气的混合物发生爆炸、燃烧。因此,用它们来催化氢气进行还原反应时,必须先用氮气置换 反应器内的全部空气,经过测定证实含氧量降低到符合要求后,方可通入氢气。反应结束后,应先用氮气把反应器内的氢气置换干净,方能打开孔盖出料,以免外界 空气与反应器内的氢气相混,在雷内镍触媒作用下发生燃烧、爆炸。雷内镍活化后应当储存于酒精中。钯炭回收时要用酒精及清水充分洗涤,过滤抽真空时不得抽得 太干,以免氧化着火。

用保险粉(na2s2o4)做还原剂时,要注意保险粉遇水发热,在潮湿空气中能分解析出硫,硫蒸气受热有自燃的危险。保险粉本身受热到190℃也有分解爆 炸的危险,应妥善储藏,防止受潮;用水溶解时,要控制温度,可以在开动搅拌的情况下将保险粉分批加入冷水中,待溶解后,再与有机物接触进行反应。

还原剂硼氢化钾(钠)是一种遇火燃烧物质,在潮湿空气中能自燃,遇水和酸即分解放出大量氢气,同时产生高热,可使氢气燃烧而引起爆炸事故,应储于密闭容器 中,置于干燥处,防水防潮并远离火源。在工艺过程中,调节酸、碱度时要特别注意,防止加酸过快、过多。使用氢化锂铝作还原剂时,要特别注意安全问题,因为 这种催化剂危险性很大,遇空气和水都能燃烧,必须在氮气保护下使用,平时浸没于煤油中储存。

上述还原剂遇氧化剂会猛烈发生反应,产生大量热量,也有发生燃烧爆炸的危险。

还原反应的中间体,特别是硝基化合物还原反应的中间体具有一定的火灾危险。例如,邻硝基苯甲醚还原为邻氨基苯甲醚的过程中,产生氧化偶氮苯甲醚,该中间体受热到150℃能自燃。苯胺在生产中如果反应条件控制不好,可以生成爆炸危险性很大的环已胺。

采用危险性小,还原效率高的新型还原剂,对安全生产有很大的意义。例如采用硫化钠代替铁粉还原,可以避免氢气产生,同时还解决了铁泥堆积的问题。

电解

电解在工业生产中有广泛的应用,食盐溶液电解是化学工业中最典型的电解反应例子之一。食盐电解中的安全问题,主要是氯气中毒和腐蚀、碱灼伤、氢气爆炸以及高温、潮湿和触电危险等。现就防爆问题叙述如下:

在正常操作中,应随时向电解槽的阳极室内添加盐水,使盐水始终保持在规定液面。否则,如盐水液面过低,氢气有可能通过阴极网渗入到阴极室内与氯气混合。要 防止个别电解槽氢气出口堵塞,引起阴极室压力升高,造成氯气含氢量过高。氯气内含氯量达5%以上,则随时可能在光照或受热情况下发生爆炸。在生产中,单槽 氯含氢浓度一般控制在2.0%以下,总管氯含氢浓度控制在0.4%以下,都应严格控制。如果电解槽的隔膜吸附质量差;石棉绒质量不好;在安装电解槽时碰坏隔膜,造成隔膜局部脱落或者在送电前注入的盐水量过大将隔膜冲坏;以及阴极室中的压力等于或超过阳极室的压力时都可能使氢气进入阳极室,引起氯含氢量高。此时应该对电解槽进行全面检查。

盐水有杂质,特别是铁杂质,致使产生第二阴极而放出氢气;氢气压力过大,没有及时调整;隔膜质量不好,有脱落之处;盐水液面过低,隔膜露出;槽内阴阳极放 电而烧毁隔膜;以及氢气系统不严密而逸出氢气等,都可能引起电解槽爆炸或着火事故。引起氢气或氢气与氯气的混合物燃烧或爆炸的着火源可能是槽体接地产生的 电火花;断电器因结盐、结碱漏电及氢气管道系统漏电产生电位差而发生放电火花;排放碱液管道对地绝缘不好而发生放电火花;电解槽内部构件间由于较大的电位 差或两极之间的距离缩小而发生放电火花;雷击排空管引起氢气燃烧;以及其他点火源等。水银电解槽若盐水中含有铁、钙、镁等杂质时,能分解钠汞齐,产生氢气 而引起爆炸。若解汞室的清水温度过低,钠汞齐来不及在解汞室还原完,就可能在电解槽继续解汞而生成大量氢气,这也是水银电解发生爆炸的原因之一。因此,加 入的水温应能保持解汞室的温度接近于95℃,解汞后汞中含钠量宜低于0.01%,一般每班应作一次含钠量分析。

由于盐水中带入铵盐,在适宜的条件下(ph值<4.5时),铵盐和氯作用产生三氯化氮,这是一种爆炸性物质。三氯化氮和许多有机物质接触或加热至90℃以上,以及被撞击时,即以剧烈爆炸的形式分解。因此在盐水配制系统要严格控制无机铵含量。

突然停电或其他原因突然停车时,高压阀门不能立即关闭,以避免电解槽中氯气倒流而发生爆炸。

电解槽食盐水入口处和碱液出口处应考虑采取电气绝缘措施,以免漏电产生火花。氢气系统与电解槽的阴极箱之间亦应有良好的电气绝缘。整个氢气系统应良好接地,并设置必要的水封或阻火器等安全装置。

电解食盐厂房应有足够的防爆泄压面积,并有良好的通风条件,应安装防雷设施,保护氢气排空管的避雷针应高出管顶3m以上。

电解过程由于有氢气存在,有起火爆炸危险。电解槽应安置在自然通风良好的单层建筑物内。

聚合

由于聚合物的单体大多是易燃易爆物质,聚合反应多在高压下进行,本身又是放热过程,如果反应条件控制不当,很容易引起事故。

例如高压聚乙烯反应一般在13~30mpa压力下进行,反应过程流体的流速很快,停留于聚合装置中的时间仅为10s到数分钟,温度保持在 150~300℃。在该温度和高压下,乙烯是不稳定的,能分解成碳、甲烷、氢气等。一旦发生裂解,所产生的热量,可以使裂解过程进一步加速直到爆炸。国内 外都曾发生过聚合反应器温度异常升高,分离器超压而发生火灾;压缩机爆炸以及反应器管路中安全阀喷火而后发生爆炸等事故。因此,严格地控制反应条件是十分 重要的。在高压聚乙烯生产中,主要危险因素有:

a.该过程处在高压下,所以当设备和管道的密封有极小损坏时,即会导致气体大量喷出到车间中,并和空气形成爆炸性气体混合物。

b.该过程为放热和热动力不稳定过程。乙烯聚合反应产生的热效应为96.3kj/mol,所以当热量来不及导出时,会引起乙烯爆炸性分解。

c.乙烯可能在设备和管道中聚合,使温度上升到危险程度,导致乙烯分解和聚合产品堵塞设备。

d.如果违反压力条件和规定的混合气体流量比,在设备中乙烯和氧气可能形成易爆混合物。

e.乙烯分解时产生的分解细粒状炭黑有可能堵塞反应器和管道,从而使过程难以正常进行,以致不得不停产进行设备清理。

由上述危险因素可见,必须对工艺流程的所有工序进行温度、压力和物料流速的严格自动控制和调节。尤其应该准确地控制乙烯中氧的限制含量,因为当氧含量超过 允许量时,反应速度将迅速加快,反应热来不及导出,以致使过程反应强度显著提高,最终使过程由乙烯爆炸性分解为甲烷和碳而结束。此外,当过量供氧时,还会 形成爆炸性混合物。

高压聚乙烯的聚合反应在开始阶段或聚合反应进行阶段都会发生暴聚反应,所以设计时必须充分考虑到这一点。可以添加反应抑制剂或加装安全阀来防止。在紧急停 车时,聚合物可能固化,停车再开车时,要检查管内是否堵塞。高压部分应有两重、三重防护措施;要求远距离操作;由压缩机出来的油严禁混入反应系统,因为油 中含有空气,进入聚合系统能形成爆炸性混合物。

氯乙烯聚合是属于连锁聚合反应,连锁反应的过程可分为3个阶段,即链的开始、链的增长、链的终止。聚合反应中链的引发阶段是吸热过程,所以需加热。在链的 增长阶段又放热,需要将釜内的热量及时导走,将反应温度控制在规定值。这两个过程要分别向夹套通入加热蒸汽和冷却水。温度控制多采用串级调节系统。为了及 时导走热量必须有可靠的搅拌装置。由于氯乙烯聚合是采用分批间歇方式进行的,反应主要依靠调节聚合温度,因此聚合釜的温度自动控制十分重要。

丁二烯聚合过程中接触和使用酒精、丁二烯、金属钠等危险物质。酒精和丁二烯与空气混合都能形成爆炸性混合物,金属钠遇水、空气激烈燃烧,引起爆炸,因此不能暴露于空气中。

为了控制猛烈反应,应有适当的冷却系统,并需严格控制反应温度。冷却系统应保证密闭良好,特别在使用金属钠的聚合反应中,最好采用不与金属钠反应的十氢化萘或四氢化萘作为冷却剂。如用冷水做冷却剂,应在微负压下输送,不可用压力输送。这样可减少水进入聚合釜的机会。

丁二烯聚合釜上应装安全阀,通常的办法是同时安装爆破板。爆破板应装在连接管上,在其后再连接一个安全阀。这样可以防止安全阀堵塞,又能防止爆破板爆破时大量可燃气逸出而引起二次爆炸。爆破板不能用铸铁,必须用铜或铝制作,避免在爆破时铸铁产生火花引起二次爆炸事故。

聚合生产系统应配有氮气保护系统,所用氮气要经过精制,用铜屑除氧,用硅胶或三氯化铝干燥,纯度保持在99.5%以上。无论在开始操作或操作完毕打开设备 前,都应该用氮气置换整个系统。当发生故障,温度升高或发现有局部过热现象时,须立即向设备充入氮气加以保护。正常情况下,操作完毕后,从系统内抽出气体 是安全生产的一项重要措施,可消除或减少爆炸的可能性,当工艺过程被破坏,发生事故,不能降低温度或发现局部过热现象时,应将气体抽出,同时往设备中送入 氮气。以上是在聚合过程中,为了防爆而必须采取的安全措施。

催化和裂化

催化反应分单相反应和多相反应两种,单相反应是在气 态下或液态下进行的,危险性较小,因为在这种情况下,反应过程中的温度、压力及其他条件较易调节。在多相反应中,催化作用发生于相界面及催化剂的表面上, 这时温度、压力较难控制。从防爆安全要求来看,催化过程中除要正确选择催化剂外,要注意散热需良好;催化剂加量适当,防止局部反应激烈;并注意严格控制温 度。采用温度自动调节系统,就可以减少其危险性。

在催化反应过程中有的产生氯化氢,有腐蚀和中毒危险;有的产生硫化氢,则中毒危险性更大。另外,硫化氢在空气中的爆炸极限较宽(4.3%~45.5%), 生产过程还有爆炸危险。在产生氢气的催化反应中,有更大的爆炸危险性,尤其高压下,氢的腐蚀作用使金属高压容器脆化,从而造成破坏性事故。

如原料气中某种能与催化剂发生反应的杂质含量增加,就可能生产爆炸危险物,也是非常危险的。例如,在乙烯催化氧化合成乙醛的反应中,由于在催化剂体系中含 有大量的亚铜盐,若原料气含乙炔过高,则乙炔与亚铜会反应生成乙炔铜。乙炔铜呈红色,自燃点是260~270℃,干燥状态下极易爆炸,在空气作用下易氧化 成暗黑色,并易起火。

裂化可分为热裂化、催化裂化、加氢裂化3种类型。

1、热裂化

热裂化在加热和加压下进行。根据所用压力的高低分高压热裂化和低压热裂化。高压热裂化在较低温度(约450~550℃)和较高压力(2~7mpa)下进 行,低压热裂化在较高温度(约550~770℃)和较低压力(0.1~0.5mpa)下进行。处于高温下的裂解气,要直接喷水急冷,如果因停水和水压不 足,或因操作失误,气体压力大于水压而冷却不下来,会烧坏设备从而引起火灾。为了防止此类事故发生,应配备两种电源和水源。操作时,要保证水压大于气压, 发现停水或气压大于水压时要紧急放空。

裂解后的产品多数是以液态储存,有一定的压力,如有不严之处,储槽中的物料就会散发出来,遇明火发生爆炸。高压容器和管线要求不泄漏,并应安装安全装置和事故放空装置。压缩机房应安装固定的蒸汽灭火装置,其开关设在外边易接近的地方。机械设备、管线必须安装完备的静电接地和避雷装置。

分离主要是在气相下进行的,所分离的气体均有火灾爆炸危险,如果设备系统不严密或操作错误泄漏可燃气体,与空气混合形成爆炸性气体混合物,遇火源就会燃烧 或爆炸。分离都是在压力下进行的,原料经压缩机压缩有较高的压力,若设备材质不良,误操作造成负压或超压;或者因压缩机冷却不好,设备因腐蚀、裂缝而泄漏 物料,就会发生设备爆炸和油料着火。再者,分离又大都在低温下进行,操作温度有的低达-30~100℃。在这样的低温条件下,如果原料气或设备系统含水, 就会发生冻结堵塞,以至引起爆炸起火。

分离的物质在装置系统内流动,尤其在压力下输送,易产生静电火花,引起燃烧,因此应该有完善的消除静电的措施。分离塔设备均应安装安全阀和放空管;低压系 统和高压系统之间应有止逆阀;配备固定的氮气装置、蒸汽灭火装置。操作过程中要严格控制温度和压力。发生事故需要停车时,要停压缩机、关闭阀门,切断与其 他系统的通路,并迅速开启系统放空阀,再用氮气或水蒸气、高压水等扑救。放空时应当先放液相后放气相。

2、催化裂化

催化裂化装置主要由3个系统组成,即反应再生系统、分馏系统以及吸收稳定系统。在生产过程中,这3个系统是紧密相连的整体。反应系统的变化很快地影响到分 馏和吸收稳定系统,后两个系统的变化反过程又影响到反应部分。在反应器和再生器间,催化剂悬浮在气流中,整个床层温度要保持均匀,避免局部过热,造成事 故。

两器压差保持稳定,是催化裂化反应中最重要的安全问题,两器压差一定不能超过规定的范围。目的就是要使两器之间的催化剂沿一定方向流动,避免倒流,造成油 气与空气混合发生爆炸。当维持不住两器压差时,应迅速启动自动保护系统,关闭两器间的单动滑阀。在两器内存有催化剂的情况下,必须通以流化介质维持流动状 态,防止造成死床。正常操作时,主风量和进料量不能低于流化所需的最低值,否则应通入一定量的事故蒸汽,以保护系统内正常流化态度,保证压差的稳定。当主 风量由于某种原因停止时,应当自动切断反应器进料,同时启动主风与原料及增压风自动保护系统,向再生器与反应器、提升管内通入流化介质,而原料则经事故旁 通线进入回炼罐或分馏塔,切断进料,并应保持系统的热量。催化裂化装置关键设备应当具有两路以上的供电电源,自动切换装置应经常检查,保持灵敏好用,当其 中一路停电时,另一路能在几秒内自动合闸送电,保持装置的正常运行。

3、加氢裂化

加氢裂化是在有催化剂及氢气存在下,使蜡油通过裂化反应转化为质量较好的汽油、煤油和柴油等轻质油。它与催化裂化不同的是在进行裂化反应时,同时伴有烃类加氢反应、异构化反应等,所以称加氢裂化。

由于反应温度和压力均较高,又接触大量氢气,火灾爆炸危险性较大。加热炉平稳操作对整个装置安全运行十分重要,要防止设备局部过热,防止加热炉的炉管烧穿或者高温管线、反应器漏气。高压下钢与氢气接触易产生氢脆。因此应加强检查,定期更换管道和设备。

硝化和氯化

硝化反应是强烈放热的反应,故硝化需在降温条件下进行。因为温度控制是安全的基础,所以应当安装温度自动调节装置。

常用的硝化剂是混酸(浓硝酸与浓硫酸的混合物)制备混酸时放出大量热,温度可达到90℃或更高。在这个温度下,硝酸部分分解为二氧化氮和水,假若有部分硝基物生成,高温下可能引起爆炸。

硝化器夹套中冷却水压力微呈负压,在水引入管上,必须安装压力计,在进水管及排水管上都需要安装温度计。应严防冷却水因夹套焊缝腐蚀而漏入硝化物中,因硝化物遇到水后温度急剧上升,反应进行很快,可分解产生气体物质而发生爆炸。

为严格控制硝化反应温度,应控制好加料速度,硝化剂加料应采用双重阀门控制。搅拌机应有自动启动的备用电源,以防止机械搅拌在突然断电时停止而引起事故, 搅拌轴采用硫酸作润滑剂,温度套管用硫酸作导热剂。不可使用普通机械油或甘油,防止它们被硝化而形成爆炸性物质。由填料出落入硝化器中的油能引起爆炸事 故,因此,在硝化器盖上不得放置用油浸过的填料。在搅拌器的轴上,应备有小槽,借以防止齿轮上的油落入硝化器中。

硝化过程中最危险的是有机物质的氧化,其特点是放出大量氧化氮气体的褐色蒸气并使混合物的温度迅速升高,引起硝化混合物从设备中喷出而引起爆炸事故。仔细地配制反应混合物并除去其中易氧化的组分、调节温度及连续混合是防止硝化过程中发生氧化作用的主要措施。

由于硝基化合物具有爆炸性,同时必须特别注意处理此类物质过程中的危险性。例如,二硝基苯酚甚至在高温下也无危险,但当形成二硝基苯酚盐时,则变为危险物质。三硝基苯酚盐(特别是铅盐)的爆炸力是很大的。在蒸馏硝基化合物时,必须特别小心。

硝化设备应确保严密不漏,防止硝化物料溅到蒸气管道等高温表面上而引起爆炸或燃烧。如管道堵塞时,可用蒸汽加温疏通,切不可用金属棒敲打或明火加热。

车间内禁止带入火种,电气设备要防爆。当设备需动火检修时,应拆卸设备和管道,并移至车间外安全地点,用水蒸汽反复冲刷残留物质,经分析合格后,方可施焊。需要报废的管道,应专门处理后堆放起来,不可随便挪用,避免意外事故发生。

氯是强氧化剂,能与可燃气体形成易爆混合物。氯代烃与空气和氧气也能形成易爆混合物。氯与氢的混合物的爆炸浓度极限范围更宽。氯和可燃烃类、醇、羧酸和氯 代烃的二元混合物在绝大多数情况下容易爆炸。众所周知,许多烃(乙烯、丙烯、正丁烯、正戊烯)能在100℃温度下,甚至在室温下以明显的速度与氯气反应, 生成含氯产物。当烯烃与氯气形成混合物并将它加热时,可能产生由绝热反应引起的自燃。所以在一定条件下,工艺设备中会发生自行加速过程,并进而转为爆炸。 乙炔加入氯气的反应过程非常剧烈,添加少量氧对这一反应可起催化作用。在氧存在下,乙炔与氯气在室温,甚至-78℃下即能相互作用,并引起爆炸。乙炔和氯 气的相互作用会引发乙炔爆炸性分解。含氯的可燃混合物具有低温自燃特性,当形成爆炸性混合物时,这一特性会增加引起燃烧的危险性。

氯化过程的特点是被氯化的大多数烃和获得的一氯或二氯代衍生物能与空气或氧气形成爆炸性混合物,所以氯化过程的设备构造、控制和自动化系统均应不让可燃产物有可能与氧气或空气形成爆炸性混合物。反应时放热量大和与乙炔等不饱和烃作用时氯有活性是氯化过程的主要危险。

在化工生产中,最常用的氯化剂是氯气,它通常液化储存和运输。

储罐中的液氯在进入氯化器使用之前必须先进入蒸发器使其气化。通常不能把储存氯气的气瓶或槽车当储罐使用,因为这样有可能使被氯化的有机物质倒流进气瓶或槽车而引起爆炸。对于一般氯化器应装设氯气缓冲罐,防止氯气断流或压力减小时形成倒流。

氯化反应的危险性主要决定于被氯化物质的性质及反应过程的控制条件。由于氯气本身的毒性较大,储存压力较高,一旦泄漏是很危险的。反应过程所用的原料大多 是有机物,易燃易爆,所以生产过程有燃烧爆炸危险,应严格控制各种点火能源,电气设备应符合防爆的要求。氯化反应是一个放热过程,尤其在较高温度下进行氯 化,反应更为激烈。例如环氧氯丙烷生产中,丙烯预热至300℃左右进行氯化,反应温度可升至500℃,在这样高的温度下,如果物料泄漏就会造成燃烧或引起 爆炸。因此,一般氯化反应设备必须备有良好的冷却系统,并严格控制氯气的流量。

第2篇 石油化工操作安全技术

操作工是石油化工生产的主体工种,他在机、电、仪、和分析等工种中起着核心主导作用。他具体、直接地操作装置生产石油化工产品。操作的正确与否直接关系到装置的安全生产。

操作技术按专业涉及炼油工艺、化工工艺、化学原理、机械、电气、仪表自动化、分析等多方面的知识。这些知识可分为应知部分(侧重于基础理论)和应会部分(侧重于实际操作)。如果按作用和表现形式划分,所有的操作理论和操作技术都可归纳为生产技术和安全技术两部分。本章以炼油化工操作工人为对象,介绍安全操作技术与技能。

炼油、化工生产装置(简称炼化装置)所使用的原料、辅助材料、助剂、工作介质及半成品和产品大都具有易燃、易爆、易中毒、强腐蚀的特点。而炼化生产过程又具有高温、高压、冷冻、连续化等特点。为了保证生产过程的安全操作,操作员工应认真学习和掌握基本的安全知识、技能和装置的一般安全要求。

一、基本要求

石油化工生产装置各有差异、安全生产的实际情况也大不相同,但却有许多共同的要求,具体可归纳如下:

(1)新人厂员工必须进行厂、车间和班组三级安全教育。操作工上岗前必须取得安全作业证。

(2)厂区严禁烟火,厂内禁止吸烟,禁止带引火物进厂。厂内生产用火必须按规定办理动火证。

(3)进入生产现场必须按规定着装,禁止穿紧身裤、裙子、钉子鞋、高跟鞋、拖鞋进入现场,上岗不准佩带耳环、项链、手镯等装饰品,长发不准露出帽子外。

(4)发生火灾、爆炸、中毒等事故,应迅速组织抢救,维护事故现场,其它岗位人员要坚守岗位,做好事故后的配合处理,禁止擅离岗位、围观看热闹。无关人员不得靠近事故现场。

(5)岗位操作工要认真执行生产技术规程和岗位操作法,严格遵守以岗位责任制为中心的各项制度,精心调整工艺,搞好设备维护。非本人专责的机、电、仪设备,未经批准不得乱动。

(6)禁止在生产用炉、热力管道设备及采暖设备上烘烤衣服、鞋袜和食物。禁止在有毒有害岗位吃饭和吃零食。禁止穿浸有易燃、易爆液体的工作服接近明火操作现场

(7)生产现场禁止存放易燃、易爆物料和自聚物、破布、油布等易燃物品。

(8)易燃、易爆、易中毒物料贮罐排水要一人操作,一人监护,排水时操作人员不得离开现场。

(9)设备运转时禁止擦拭、拆卸、安装传动部件。禁止拆除或损坏传动防护罩。

(10)未按规定办理审批手续,禁止拆除或变更安全联锁装置和安全防爆抑止装置。

(11)停用闲置设备必须用盲板与生产系统切断。

(12)厂内开挖动土必须经机动部门批准,以防损伤隐蔽工程。

(13)机动车辆进入易燃、易爆生产区应办理动火证。

(14)岗位操作时严禁随地乱排乱放易燃、易爆和有毒物料。

(15)生产岗位临时用电必须按规定办理用电手续,凡易燃、易爆区域的临时电线(电缆)不得有破损裸露,并要采取防水和防机械损伤保护措施。

(16)压力表和贮槽液位计(现场)应有控制上、下限警戒线。

(17)利用氮气置换和压送物料时,禁止将氮气管线与物料管线(设备)固定连接,以防物料返窜入氮气系统。氮气用完后要及时断开活接头。

(18)岗位异常现象的处理必须给下一班书面交接清楚。并一同到现场核实确认。

(19)操作工应了解本岗位过去发生的典型事故,清楚本岗位操作的安全要点。

(20)岗位操作要按要求巡回检查,如实准确地填写岗位记录。

二、岗位操作基础安全知识

(一)化学危险品

凡具有各种不同程度燃烧、爆炸、中毒、腐蚀、放射性等危害特征的物质,受到摩擦、撞击、震动、接触火源、日光暴晒、遇水受潮、温度变化或遇到性能有抵触的其它物质等外界因素的影响,引起燃烧、爆炸、中毒、灼伤等人身伤亡或财产损失的物质都属于化学危险物品,简称化学危险品。

(1)化学危险品分类见表8—1。

(2)化学危险品危险特征见表8—2。

物品名称特 性
爆炸性物质1.化学反应速度极快,可在万分之一秒的时间内反应爆炸

2.反应过程放出大量的热,一般可放出数百到数千千卡的热量

3.能产生大量的气体产物。1kg硝化甘油爆炸后产生716l的气体

氧化剂1.具有较强的氧化性、化学性非常活泼,具有较强的得电子能力

2.分解性。遇热摩擦震动和撞击极易分解放出氧气,产生高热

3.遇光分解。如硝酸银遇光分解产生银及氮的氧化物

4.氧化接触还原剂。有机物都能发生不同程度的化学变化引起燃烧或爆炸

压缩气体和

液化气体

1.压缩性。气体的可压缩性

2.膨胀性。气体受热有膨胀性

自燃物质1.某些物质的化学活泼性强,极易氧化引起自燃(如黄磷)

2.某些自燃物的化学性很不稳定,易发生分解而导致自燃,如硝化纤维及其制品

3.某些物质分子中,含有较多的不饱和双键(—c=c—),容易和空气中的氧产生氧化作用引起自燃,如油布、油绸是用桐油制成

遇水燃烧物质1.遇水分解,发生剧烈反应放出氢和大量的热,其热量能使氢气自燃或爆炸,如钾、钠、锂等

2.遇水剧烈反应,放出不同的可燃气体乙炔、甲烷等,如电石遇水放出乙炔,碳化铝遇水放出甲烷

3.遇水能自燃。如磷化钙、磷化锌遇水生成磷化氢,在空气中自燃

易燃液体1.易燃性。具有高度的易燃性,与火焰接触迅速起燃

2.挥发性。在低温下也有不同程度的挥发性

3.爆炸性。蒸气与空气混合在一定的比例下遇火爆炸

4.带电性。流动过程中能产生静电引起燃烧

5.流动性。很快向四周扩散

6.遇强酸或氧化剂引起燃烧

7.不同程度毒性

易燃固体1.先受热熔化,然后蒸发气体,再分解、氧化,直到出现火焰而燃烧

2.粉尘易燃固体,其悬浮状时能与空气混合而形成爆炸性混合物

3.金属粉末,如铝、镁遇火,在高温下放出氢气发生爆炸

4.与氧化剂作用发生剧烈反应引起燃烧爆炸,如赤磷遇氧化剂氯酸钾能起火燃烧

毒害物质1.毒害物质在水中的溶解度越大,毒性也越大

2.毒性与化学结构有关

3.某些物质对人体不同器官有选择性和蓄积性

腐蚀性物质1.具有各种不同程度的腐蚀性

2.有的还具有毒性,如酸雾

3.有的具有易燃性,如酯酐

4.有的具有助燃性,如硝酸

放射性物质1.能放射出α、β、γ射线和中子流

2.β射线穿透能力比α射线强

3.α射线的电离本领很强

4.γ射线的穿透能力比α射线大10000倍

5.中子流的穿透能力很强

6.对人体有危害,主要是红血球减少等

上一页1234下一页(二)岗位安全操作要点

炼化生产装置的岗位特点各不相同,无论是原料助剂、工艺流程、自动化程度、产成品工艺生产特点,还是易燃、易爆、易中毒的特点,都有很大的差异。所以岗位的安全操作一定要从本岗位实际出发,结合工艺技术和自控条件总结、归纳、学习和理解各岗位的安全操作要点。一般来说,岗位操作主要包括岗位开停车、工艺调控、紧急异常情况处理和日常检维修等内容。

1.岗位开车的安全操作要点

岗位开停车是事故发生概率较大的一个环节,无论是正常的装置开车还是检修改扩建后的装置开车。事故发生往往因为某一块盲板未抽或未加,某个阀门开关不正确而引起的。所以按规定程序认真仔细地进行开车前的准备和操作,是安全的重要保证。开车过程中应注意以下工作:

(1)核准开车流程和开车步骤,认真核准自控仪表设定值和控制指令。

(2)认真进行设备、系统的检查。包括阀门的开关状态,盲板加堵与抽除状况,水、电、汽、气、冷剂、燃料气、燃料油等公用工程的供给量和接受状况,安全检测仪表及安全设施的投用情况,原材料、助剂的准备情况等。

(3)按规定进行手动盘车和电动盘车。

(4)原料、助剂的配置分析和合格备用情况。

(5)原料、助剂贮槽的排水(排液)。加热、冷凝(却)系统排水(排液)。

(6)阀门的开、关不能用力过猛。特别是高压、高温、深冷、急冷系统和蒸汽管网及其它有冷凝液积存的系统。其进料阀门的开启一定要缓缓操作,必要时要按规定认真进行系统的预热和预冷。

(7)所有密闭的贮槽、反应器、塔器等,检修后开车投料(接料)前必须先分析氧含量,低于2%方能开车。

2.易燃易爆系统正常操作时的安全注意事项

(1)高温、高压、急冷、深冷及氧化反应等操作,工艺指标的控制要留有余量,不能顶限控制操作,要充分体现工艺参数的安全要求。

(2)工艺参数的调整控制,要处理好关键与一般的关系,清楚控制要点,明确控制措施。例如有些伴有热交换的反应过程,工艺参数的控制措施如下。

①温度控制如表8—3所示。

②控制投料速度和配比如表8—4所示。

③超量杂质和副反应的控制。许多化学反应由于反应物料中杂质的增加导致副反应、过反应发生,造成燃烧或爆炸。如乙炔和氯反应生产氯乙烯。氯化氢中的游离氯一般不允许超过0.005%,因为过量游离氯可与乙炔反应生成四氯乙烷而燃烧爆炸。

为了防止有害杂质引起事故,采用加稳定剂的办法。如为提高氯化氢的稳定性常加入浓度为0.001%~0.5%的硫酸。

对有较大危险的副反应物,要采取措施避免其在贮罐内长期积聚。

④溢料和泄漏控制。化学反应中不少物料容易起泡,从而发生溢料引起燃烧。造成溢料的原因与物料的构成、反应温度、加料速度以及消泡剂用量、质量等有关。

震动往往导致管线焊缝破裂造成泄漏。

(3)工艺参数的调控要本着勤观察、多思考、看趋势、微调精调的原则。避免盲目乱调和大起大落的调整。

(4)把仪表操作与现场核实结合起来,认真进行岗位巡回检查,及时发现、准确判断、果断处理问题。

(5)及时校核一、二次表之间的差异,及时核查dcs调节与现场实际动作的差异,及时消除仪表偏差和dcs误动作。

(6)认真区分工艺参数报警和安全检测仪表的报警,切不可把仪表报警(特别是安全仪表的报警)误认为是仪表故障而忽视。更不得怕报警声响而关停声音报警器。

(7)切不可为了工艺调整方便而私自关闭、停止自动联锁装置、防爆抑制装置等安全装置。

(8)及时消除设备的跑、冒、滴、漏。

(9)严格控制易燃、易爆、有毒、有害物料的排放,严禁乱排乱放。气相放空原则上要排入尾气回收管网。残液排放要排人化污系统,不得向雨排地下管网中排放。

(三)工艺参数的控制

在生产过程中工艺参数主要是温度、压力、流量、液位、物料配比等控制参数。工艺技术部门对工艺指标的制定考虑了指标的安全性。但一般情况下工艺指标只是一个范围,而不是一个确定值。所以工艺指标的安全控制应该包括两层含义,一是不违反工艺控制指标,二是在工艺指标范围内优化操作。在同样的控制指标范围内,不同的工艺操作优化水平的效果截然不同,也是操作人员实际水平高低的体现。

1.温度的控制

温度是生产操作最重要的指标,不同化学反应有最适宜的反应温度;各种机械、电气、仪表设备都有使用的最高和最低允许温度;各种原材料、助剂等都有贮存使用的温度范围。原油加工、蒸馏、精馏过程中不同的控制温度更是直接决定着不同馏分产物的组成。工艺过程中温度的受控程度更是装置安全性的重要标志。温度对岗位操作的影响是最直接的。如在石油裂解过程中,超温会造成催化剂失去活性,深度裂解,导致炉管结焦烧毁甚至发生炉膛爆炸。在塑料、橡胶聚合过程中,超温往往会造成釜内爆聚、凝胶结块等。在氧化、还原反应生产过程,如果温度控制不当,可直接引发爆炸。如过氧化氢异丙苯生产过程中,异丙苯氧化反应温度不得超过120℃,提浓塔塔釜温度不得高于100℃,否则就会因为氧化过度和过氧化物分解引起爆炸。所以生产过程的温度控制力求合理,手段力求完善,操作要力求准确。

反应热的加入或移出,控制手段要综合搭配、完善,不留死角。以橡胶聚合为例,釜内反应热的移出手段应考虑釜内搅拌强度,釜内列管、蛇管散热控制,夹套散热控制,釜外循环冷却系统(如单体、惰性气体蒸发外循环冷却等)的控制等,要针对釜内放热热负荷大小和釜的结构与容量大小,配置完善的温度控制手段。特别是对于高温、高压;剧烈反应的温度控制,要实行双保险或多保险。如聚合釜搅拌的双路供电或设保安电源、人工搅拌装置等。裂解炉的炉管温度联锁、湿润配合蒸汽联锁、进料联锁以及防止计算机误动作和人工误操作的联锁等,使反应系统正常的温度控制和异常情况下的温度控制都有完善有效的手段。

在实际操作时,判断问题要准,指令下达要准,执行指令要准,是温度控制的重要保证。

2.压力的调整与控制

压力控制主要包括压力的形成与压力的使用两个环节。一个系统压力的来源主要是气体压缩增压、液体输送增压和化学反应增压三个方面。气体压缩增压环节,主要是以压缩机为中心的压缩安全操作。随着工艺的不同,压缩机的能力、结构、形式各不相同,如往复式压缩机、离心压缩机、水环(液环)式压缩机、螺杆压缩机等。但从操作控制强度和安全角度出发,最典型的是往复式压缩机。在岗位操作中影响压缩机工艺参数的最突出问题有液体进缸、机械故障和出口及后系统排压不畅。操作者在操作中要勤于检查,认真听、摸、看、想。就是听压缩机各部位运转声音是否正常,摸电机及其他有关部位温度是否正常,看水、油分离器液面,看放空及后系统有无凝结水(液)冻堵,想就是认真思考检查情况,判断压缩机运转是否正常。

另外,就是对化学反应增压的操作控制。有些反应过程要产生气态副产物,再加上系统自身的压力,如果尾气系统排压不畅,就会使整个反应系统憋压,影响系统的压力控制,严重时会引起事故。如某化工厂乙苯绝热脱气炉在冬季开车时由于脱氢气反应系统尾气放空阻火器被凝结水冻堵,排压不畅,导致绝热脱氢炉系统憋压,乙苯从法兰垫刺开漏出,遇炉子明火而着火爆炸。如果反应系统的增压与尾气凝结水(液)的冻堵连在一起,其危害更大,所以更应引起高度重视。

3.液位的安全控制

生产过程的液位控制主要是不超装、超贮、超投料,液面要真实。假液面是生产过程中影响液位控制的常见问题。形成假液面的原因主要有:

(1)液面计(及液面计管)冻堵;

(2)密度不同的液体混合操作时,由于液面计管和容器内的液体密度不同,造成液面计液面与容器实际液面不一致;

(3)液面计阀门关闭或堵塞;

(4)液面计管、阀门被凝胶、自聚物、过氧化物等堵塞,许多液面计管(板)是透明的,容易暴露在阳光下,所以在液面计处很容易形成自聚物和过氧化物;

(5)贮槽排水(排液)不及时;

(6)容器搅拌混合效果不好,容器内有沉淀分层;

(7)液面计与容器气相不连通,造成气阻;

(8)容器内液体气化,造成气液相界面不稳;

(9)接送料操作中液面不稳定。

消除假液面首先要稳定操作,认真进行岗位巡回检查。另外还应注意液面计的选型和结构的改进。

4.物流与物料配比的控制

在生产中物料流量(或配比)的控制对操作的影响随着反应的不同而不同。如在放热反应中,随着反应物投料速度加快,反应热量增加,反应温度就上升。如果反应热不能及时撤出,就会引起反应系统超温,物料分解、突沸而引发事故。如果反应温度过低,反应物加入量过大,会暂时抑制反应温度上升,一旦反应温度回升,则积聚的反应物会在局部剧烈反应,同样会导致突沸和事故发生。在有些氧化反应过程中,因加料速度过快,会造成反应速度过快发生爆炸事故。而且有些反应的反应物本身就能形成爆炸混合物。如乙烯氧化生产环氧乙烷的反应中,乙烯的氧化就是在接近爆炸混合浓度的配比下进行氧化反应的,一旦物流控制不当就会引起爆炸。

物流和配比的控制操作,在高分子合成的工艺过程中有它独特的安全特点。与精细化工和一般化工合成反应不同,高分子合成的聚合反应主体是单体,用来引发聚合反应的引发剂配比很小,而引发剂加入量的微小变化,对聚合反应的速度和高聚物产品的结构性能有很大影响。引发剂加入的不准,会导致聚合反应超温、超压、爆聚、凝胶结块等。准确加入引发剂,应注意以下几个方面:

(1)选择合适的计量设备。要根据引发剂的实际加入量选择计量槽和计量泵的大小。如果计量泵、计量槽选择过大,会降低计量调节精度,使操作难以控制。

(2)简化计量系统工艺配管,提高自动化控制水平。尽量减少物料在系统的滞留量,一方面可以缩短计量环节的反应时间,另一方面可减少引发剂在计量系统停留时的凝结、结晶、沉淀。特别是间歇聚合的生产过程,引发剂结晶沉淀,堵塞液面计和加料管线是冬季生产的常见问题。

(3)准确计量、核准配方量。

(4)精心操作准确计量。认真检查计量设备,及时消除假液面。dcs控制系统要注意核对计量前后的液面变化,防止计算机控制的误动作或假动作。

(5)按要求进行搅拌,保证引发剂溶液的均一性和分析代表性。

此外,在许多高分子聚合的共聚过程中,不同活性的单体配料比例控制也应特别注意。

①由于不同单体的活性不同,单体投料时的配比控制不好,就会影响聚合反应的速度。如在丁二烯和丙烯腈共聚过程中,由于丙烯腈的活性较大,在投料操作中,如果丙烯腈多加了,聚合反应就会变得剧烈,严重时会导致超温、爆聚、凝胶结块堵塞管线和设备。所以在实际生产中(特别是高腈聚合物的聚合过程中)丙烯腈的投料比例要严格控制;

②不同单体投料比例的控制,直接影响共聚物中单体的结合比率和高聚物的结构,影响高聚物的质量。

加料顺序和速度是所有化学反应操作中至关重要的一环。有些反应操作中,如果反应物加料顺序颠倒,可能引起爆炸。如氯化氢合成时必须先投氢后投氯。三氯化磷生产时必须先投磷后投氯。磷酸脂与甲胺反应时应先投磷酸脂后滴加甲胺等。有些反应过程中反应速度是通过反应物的加入速度来控制的。如在丁基萘磺化生产间丁基萘磺酸的过程中,就是通过控制发烟硫酸的加入速度,控制反应速度和防止超温。另外,有些反应过程中如果加料速度过快,会造成有害的或易燃易爆的反应尾气来不及吸收而积聚外逸,造成人身中毒或引发火灾爆炸事故。所以生产中一是要按规定程序加料,二是要严格控制加料速度,三是要有与反应能力相适应的尾气吸收和通排风设施。

5.原料中微量杂质的控制

在普通化学反应和高分子聚合反应中,原料(或反应物)中的杂质虽然量小,但影响很大。如在聚合反应过程中,有些杂质会终止聚合反应活性,降低反应速度;有些杂质会破坏乳化液、悬浮液等反应系统的稳定性,造成反应器内凝聚结块、堵塞设备;有些杂质会使高分子链发生岐化和交联,影响聚合产品质量等。在许多化学反应过程中杂质的存在会引发副反应。原料中的杂质可能直接导致生产和贮运过程发生事故。如丁二烯中过氧化物含量增多,就有可能发生因过氧化物受热或受振动分解引起的爆炸事故。原料碳四中乙烯基乙炔含量增加,会引起由乙烯基乙炔遇氧而形成的过氧化物分解爆炸事故。在化工操作中,对原材料或反应物杂质的控制,一是要按规定进行使用前的取样分析,不合格的不能使用。二是要注意观察原材料、助剂的外观质量,如丁二烯过氧化物为乳白粘稠状的,许多阻聚杂质会使原料变为黄色或棕色等,这都可以在贮槽液面上看出来。其三是加强原料、助剂投入反应后的操作监控,及时根据反应异常现象判断原材料助剂中杂质的影响,有针对性地采取措施,保证生产的安全稳定。

6.溢料的操作控制

溢料主要是指化学反应过程中由于加料、加热速度较快产生液沫引起的物料溢出,以及在配料等操作过程中,由于泡沫夹带而引起的物料溢出。由于溢料时相界面不清,给液面的调节控制带来困难。反应过程中,溢料使反应物料外泄,容易发生事故。在连续封闭的生产过程中,溢流又容易引起冲浆、液泛等操作事故。为了减少泡沫,防止出现溢料现象,首先应该稳定加料量,平稳操作。第二,在工艺上可采取真空消泡的措施,通过调节合理的真空差来消除泡沫。如在橡胶生产的脱除挥发物的操作中可通过调节脱挥塔塔顶与塔釜的真空度差来减少脱气过程的泡沫,以防止冲浆。第三是在工艺允许的情况下加入消泡剂消减泡沫。第四是在配料操作中可通过调节配料温度和配料糟的搅拌强度,减少泡沫和溢料。

如果出现溢料或泄料,要根据物料性质进行处理,如果是易燃、易爆和有毒、有害的物料溢出,则禁止向排雨和生活废水系统冲扫。

7.公用工程的安全控制

装置的公用工程是指在生产装置上共同使用的电、水、蒸汽、工艺空气、仪表空气、氮气、冷剂等工程供应网。公用工程是操作和工艺参数控制最基本的保证。如果没有稳定的公用工程供给,就无法控制工艺参数,也无法正常开车。在一般生产过程中,对公用工程的使用与控制都有明确规定。如:

(1)氮气压料、吹扫、置换必须用活接头连接,用完氮气必须断开活接头,以防物料窜入氮气管网中。

(2)仪表用空气禁止用于工艺吹扫和置换等作业,以保证仪表空气管网的压力稳定。

(3)冬季蒸汽管网和用汽设备接受蒸汽时,须排出冷凝液并认真进行预热,蒸汽阀门不能开得过猛过大。

(4)消防水、过滤水、生活水等不能互窜使用。

(5)蒸汽、氮气和工艺空气的使用要集中统一调度,有压力波动应及时与调度联系。氮气压力低于物料压力时,严禁用氮气吹扫设备管线和用氮气压送物料,以防物料反窜入氮气管网中。

(6)易爆聚、连续性强、危险性大的重点用电部位和系统,要采用双路供电或配备保安自备电源,以保证安全生产。

8.工艺参数的自动控制

随着技术进步,炼化生产装置的自动化控制水平越来越高。生产过程工艺参数的控制从现场显示、气动检测调节控制、电动检测调节控制、智能型仪表控制到dcs计算机控制,大大提高了工艺参数的受控程度,保证了工艺的稳定和装置的安全生产。在高度自动化控制的操作中应注意以下问题:

(1)在控制编程锁定之后,非编程专业人员不得解除锁定、随意调整。工艺操作人员只能在自己的操作盘上操作,其它人不能乱动。

(2)随时进行计算机操作与现场实际动作的检查,及时防止和消除计算机误动作。

(3)加强操作责任心,及时处理异常报警。由于计算机控制精度高,工艺参数和安全检测报警点多,操作中不能有麻痹思想而忽视报警处理。在这方面也有过深刻教训。某化工厂一次碳四跑料后检测仪表报警,没引起操作人员的重视和处理,反而认为是仪表误动作,甚至关闭了报警信号。结果大量液化气体溢出,蔓延到厂大门,发生严重火灾爆炸事故。

(4)认真做好岗位巡检,及时消除仪表与现场的差异。

(四)异常现象的处理

异常现象包括工艺的异常波动和外界的异常影响。其中工艺的异常波动主要是工艺操作和机械、电气、仪表等方面的原因所致。外界的异常影响如果处理不当,会直接导致各类事故发生。而异常工艺波动如果不能准确找出原因及时处理,也会演化为事故。所以正确处理异常现象是预防事故发生的最有效、最基本的原则。

1.异常现象的处理原则

(1)正确区分工艺波动与工艺异常的界线。两者之间既区别又有着内在联系,工艺超出了正常的波动范围就可视为异常现象。工艺异常现象第一类是由于对正常的工艺波动发现不及时、处理调节不当而发展形成。这类工艺异常可以通过常规调节手段调节;第二类是由于系统和设备的故障引发的,这类工艺异常现象在初期往往与正常的工艺波动混在一起,一旦超出正常波动范围而形成工艺异常现象之后,用常规的调节方法难以使之恢复正常,必须找出并消除设备系统的故障之后,才能使工艺恢复正常;第三类工艺异常现象是由外界环境的突变引起的,如突然停电、停汽、停水、停冷剂、停导热油等,此类工艺异常现象事先没有任何先兆,危害性也较大。

(2)精心操作、勤于观察思考,善于从变化趋势中发现异常的工艺变化。

(3)工艺异常现象要尽可能做到发现早、判断准、处理及时果断。如果耽误了处理时间,异常现象就有可能导致事故。

(4)对异常现象要认真分析,综合考虑,防止在异常现象处理中引发新的异常。

(5)异常现象处理时要按规定程序进行,不能盲目蛮干,不能随地乱排乱放物料,严禁在室内排放易燃易爆物料。

2.异常现象的安全处理要点

(1)停电。正在反应的物料要加大冷剂通人量,并进行人工搅拌,防止局部爆聚。临近反应终点的物料可视情况提前卸料,并适当多加入终止剂。关闭有关阀门,防止物料互窜。尾气放空,防止系统憋压。

(2)停水。及时加大其它冷剂的用量,以防止反应釜超温,防止段间及出口用水冷却的压缩机超温超压;防止水冷却的蒸馏(精馏)系统气相冲塔。

(3)停氮气。停止压送料及吹扫置换等操作,及时断开氮气接头,防止因氮气无压而使易燃、易爆及有毒、有害物料反窜人氮气管网中。

(4)停工艺空气。停止设备空气置换作业,停止用工艺空气强制通风作业的容器内检修施工作业,防上停空气后容器内缺氧窒息。

(5)停仪表空气。立即切换,进行现场手动操作。防止因停仪表空气而发生超温超压等工艺失控现象。

(6)停蒸汽。立即采取措施,防止冬季蒸汽保温设备管线等设备的冻结。防止蒸汽供热熔化或溶解操作的降温凝固结块。防止粉末干燥系统的湿料结块。

(7)停燃料气。关闭燃料气阀门,注意防止燃料气复送后造成火灾或回火。

(8)事故状态的处理。事故状态下操作人员要沉着冷静,不慌不乱,果断地按事故处理预案进行处理,防止事故发生。如液态烃跑料后,现场空间充满了可燃气体,一遇明火就会发生火灾爆炸事故。这时要立即设法切断物料来源,封锁现场,禁止一切可能产生火花的作业。设封锁隔离区,以防可燃物扩散遇火源而爆燃。从远距离(如配电室)停电,禁止无关人员进入现场。立即报警,要求消防车、气防车远距离监护,统一协调指挥各专业人员现场抢救。

(五)压力容器的安全操作

炼油、化工生产装置中塔器、贮槽、反应器、换热器、锅炉等设备一般都是压力容器。压力容器的安全管理要认真执行劳动部《压力容器安全技术监察规程》(简称《容规》)。岗位操作过程中的压力容器使用安全要点如下:

(1)压力容器操作人员要在企业生产技术和安全技术培训合格的基础上接受地方劳动部门压力容器操作培训,并取得合格证书。

(2)要认真落实岗位压力容器使用维护专责制,加强日常巡检和维护,保证压力容器及附件如安全阀、液位计、温度计、压力表等安全装置完好投用。

(3)检修更换压力容器阀门时,要严把阀门的材质和质量关,特别是贮槽类压力容器进出口第一道切断阀不能使用铸铁阀门,且阀门的公称压力要比压力容器的压力上限高一个压力等级。

(4)压力容器检修完毕后必须经过严格定压查漏试验(压力容器的定期水压试验和气压试验由安全和机动部门的专业人员进行试验)。定压查漏合格之后方可投入使用。定压查漏工作要特别注意以下问题:

①定压查漏试必须在容器及其安全阀、液面计、温度计、压力表、爆破板和管线、阀门处于工艺流程使用状态下进行。特别注意在系统压力表阀、液面计阀开启状态下进行。

②定压查漏必须专人进行,认真做好记录。查漏要用肥皂水,对所有检修过的法兰及焊缝、阀门、安全阀、仪表接头、液面计等静密封点逐一检查,查出的漏点要做记号,待卸压后进行消除,漏点消除后再充压查漏,直至合格。禁止压力容器在受压状态进行检修作业。

③定压要严格保证定压时间,平均每小时泄漏量不超过0.2%为合格。计算公式如下:

式中 p_、t_——分别为试验终了时的压力(绝压)、温度;

ph、th——分别为试验开始时的压力(绝压)、温度;

t——定压时间,h。

(5)压力容器安全阀前一般不装阀门。如装阀门,必须保证阀门全开并加铅封。操作人员交接班时要注意检查安全阀前阀门的开启和铅封情况。

(6)在正常生产状况下,安全阀前后禁止加堵盲板,不能为了图省事(特别是当安全阀有故障而时常小漏的时候)在安全阀前、后加堵盲板。

(7)对容易挂胶堵塞介质的设备,为了防止安全阀在正常状况下未超压起跳就被介质堵塞,影响正常动作,设计时可在安全阀前增设一块爆破板,如图8—1所示。

这种设计必须注意以下问题:

①安全阀与爆破板之间必须加装压力表。

②爆破片的爆破压力应小于或等于安全阀的起跳压力。

③安全阀与爆破板之间的距离不应太小,一般不小于两倍管道内径。否则破碎的爆破片会影响安全阀的正常起跳与回座,如图8—1。

④操作中要注意检查爆破板后压力表的变化。正常操作下该表压力为零,如果有压为,可能是爆破板破裂。

(8)压力容器安全操作的根本保证是严格执行工艺条件。不超温、不超压、不超贮,及时排水(排液),消除假液面和设备、阀门、管线的冻堵。认真执行岗位巡回检查,及时消除跑、冒、滴、漏和其它工艺异常及安全隐患,保证压力容器的安全运行。

(9)对超期服役和降级使用的压力容器,要有重点监护使用责任书。在工艺允许的范围内尽可能降压、降温、降低贮存液面进行控制。加强巡回检查和设备维护保养。加强设备监测和测试。加强日常安全检查。确保落实各项特护措施。

(六)安全装置

1.安全装置分类

安全装置是为了预防事故发生和防止事故蔓延所设置的各种检测、控制、联锁、防护、报警仪表、仪器装置的总称,常见的安全装置分为以下七类。

(1)检测仪器仪表。如压力计、真空计、温度计、流量计、物位计、酸度计、浓度计、密度计及超限报警装置和可燃气体检测报警仪、毒物检测报警仪、火灾报警仪等。

(2)防爆泄压装置。如安全阀、爆破片、呼吸阀、易熔塞、放空管、通气口等。

(3)防火控制与隔绝装置和防爆抑制装置:如阻火器、回火防止器、安全液封、固定式火灾报警装置、蒸汽幕、水幕、惰性气体等。

(4)紧急制动、联锁装置。如紧急切断阀、止逆阀、加惰性气体及抑制剂装置、各类安全联锁装置等。

(5)组分控制装置。如气体组分控制装置、液体组分控制装置、危险气体自动检测装置、混合比例控制装置、阻止助燃物混入装置等。

(6)防护装置与设施。如起重设备的行程和负荷限制装置、电器设备的过载保护装置、防静电装置、防雷装置、防辐射装置、防液堤、防火墙、防爆墙等。

(7)事故通讯、信号及疏散、照明设施。如电话、警报器、疏散标志及设施等。

2.安全装置使用维护说明

(1)压力表通常分为液柱式、弹力式、电气式、活塞式四大类。生产装置上最常见的是弹簧式压力表。弹簧式压力表在使用中一是要经计量部门检验合格并贴有合格标签。二是使用中要有压力控制上、下警戒线。三是当压力表指针不回零时要立即更换。四是高温易堵易腐蚀介质要填充隔离保护液。隔离保护液要与被测介质不发生化学反应或不混溶。如表8—5所示。

压力表隔离保护装置结构举例如图8—2、图8—3所示。

(2)温度计。常用温度计分类如表8—6所示。

温度计在使用中应用注意的,一是防止机械碰砸损坏。二是防止热电偶、电阻体套管腐蚀漏料和套管被搅拌浆叶打弯打伤等。三是防止热电偶、电阻体接线碰砸断裂。

(3)流量计以生产中最常用的椭圆齿轮流量计为例,在使用中一是要注意检查计量有无异常声音,防止出现机械故障。二是要防上液体在表前气化,影响计量准确性。

(4)液位计。玻璃管和玻璃板液面计使用中要防止堵塞冻结,防止破裂。玻璃管液面计都要有防护罩。

浮子液位计要防止浮子被卡和浮子绳腐蚀断裂。

法兰式液位计(双法兰和单法兰式)使用中应注意防止法兰口堵塞和介质密度变化对液位测量的影响。

雷达式液位计使用中应注意介质变化后被测介质对雷达波吸收率的变化,防止出现检查偏差。

(5)防爆泄压装置。防爆泄压装置主要指安全阀、爆破片、防爆门、放空管等。

安全阀在使用中要定期检查铅封是否完好,各部位螺丝有无松动、重锤有无位移。发现安全阀有渗漏时要及时更换,严禁采取增加安全阀的加压载荷的方法来消除渗漏。

(6)防爆抑制装置。防爆抑制装置是指在特别危险的设备及系统(如气相粉末干燥系统等)通过设置自动引爆防爆灭火弹、自动起动灭火蒸汽和消防水雾等措施,制止设备系统内发生火灾爆炸事故的一种自动联锁装置。防爆抑制装置一般由灭火防爆弹、灭火蒸汽、消防水雾及相应的温感、压感控制联锁等系统组成。防爆抑制装置要在设备系统开车的同时投用。防爆抑制装置要定期检查防爆弹。

(7)危险气体检测报警装置。常见的危险气体检测报警装置有可燃气体检测报警器和毒物检测报警器。按安装形式又可分为固定式和便携式。可燃气体报警器一般分两级报警,一级报警为可燃气体爆炸下限的20%。二级报警是爆炸下限的40%,也可根据生产工艺的要求设置一、二级报警值。毒物检查报警仪对某种毒物在空气中最高允许浓度进行检测报警。

危险气体检查报警器由二次表和传感变送器组成。在使用时,现场的传感变送器不能砸碰,不得冲水。要尽量避免探头长期浸于高浓度危险气体中,以防探头中毒失效。

(8)火灾报警装置常见的有温感器和烟感器等,通常具有自动探知火情、自动报警,与自动灭火系统联动,实现自动灭火等功能。

(七)设备交出检修的安全要求

石油化工设备从裂解炉、加热炉、合成塔、精馏塔、压缩机、压滤机、聚合釜、反应器、换热器、干燥器、分离器到各类泵、罐等,种类繁多,规格不一,且大多都是非定型设备。每台设备的检修都有它独特的技术、安全要求。设备的检修具有专业性强、交出难、工种交叉作业多、立体交叉作业多、安全防护要求高等特点。无论是计划内停工进行的大修、中修、小修还是计划外不停工进行的抢修,都有特殊性。统计数字表明在停车及检修过程中发生的事故约占事故总数的1/3以上。所以化工检修必须严格按规定程序进行,认真执行各项安全检修制度。

第3篇 检修安全在石油化工装置上的对策——做好检修前的现场安全技术交底和安全教育工作4

检修前,方案编制人应向参加检修的全体人员进行检修方案技术交底,使其明确检修内容、步骤、方法、质量标准、人员分工、注意事项、可能存在的危险因素及由此而应采取的安全措施;组织检修人员到检修现场,了解和熟悉现场环境,进一步核实安全措施的可靠性。针对检修的难易程度、可能存在的危险因素、可能出现的问题和工作中容易疏忽的地方,结合企业的安全规章制度和典型事故案例,对参加检修的全体人员进行安全技术和安全思想教育,以提高他们执行各项安全规章制度的自觉性和落实安全措施重要性的认识,为安全检修创造条件。对参加重要关键部位或有特殊技术要求项目的检修人员,还要进行专门的安全技术教育和考核,身体检查合格后方可参加检修施工作业。

刘光山

第4篇 原油、石油化工产品的储存地点重点部位的安全技术

(一)常压罐区、罐组

原油的闪点范围比较宽,一般在20—100℃之间,凝固点较高,一般都需要加热储存,极容易产生突沸。轻质成品油闪点较低,极易产生静电和泄漏并引起火灾;重油的凝固点较高,需要加热储存,某些油品加温时,因含有水分,燃烧时会发生热波传导形成突沸,因此原油和成品油在储存过程中危险因素较多。

储罐和罐区是大量危险介质集中储存的部位,一般都是国家或企业的重点管理的关键部位,都是重大危险源。在设施、设备、建筑物和构筑物以及平时管理等方面,都应充分考虑这些特点,加强维护、检查和监督工作。

(二)地坪

储罐或罐区如果发生油品渗漏、跑油,如果不能及时回收,就可能污染水源和农田。油罐火灾时可能会危及邻近设施。枯草是火源的媒介,会引起火灾或增大火势,使扑灭难度增加。较深的洼坑,易积聚油气,形成爆炸危险浓度等。

(三)水封井及排水控制装置

水封井及排水控制装置如果失去作用时,会给油品回收带来困难。泄漏的油品可以通过水封井及排水控制装置流淌到罐区之外,使污染面积增大,并诱发火灾爆炸,扩大灾害范围,国内外都曾多次发生过此类事故,损失严重。

(四)消防道路

消防道路应符合gb 50160--92(1999年版)等有关规范标准的要求。道路宽度或转弯半径不够,道路破坏、坑洼不平、堵塞,以及出现桥涵断裂坍塌等情况,都将影响消防车通行,贻误战机。

(五)防火堤

防火堤和隔堤是阻止油品溢出罐区的保护措施,符合规范要求的防火堤可以有效的缩小灾害范围和回收跑、冒油品。防火堤的容积以及结构设计和施工不符合规范要求,会给罐区带来事故隐患。发生坍塌、孔洞和裂缝等情况时,防火堤会失去作用,对安全构成威胁。

(六)油罐基础

油罐基础应能满足地震和油罐荷重的要求。油罐基础严重下沉,特别是发生严重的不均匀下沉时,将直接危及罐体的稳定性和可靠性。油罐基础设计或施工不符合要求,在地震或荷重发生突然变化时,极有可能撕裂底板或壁板等造成巨大灾害。

(七)罐体

储罐是储存介质的关键设备,也是事故的多发部位。罐本体发生变形,一定会影响储罐的强度,罐底、罐顶或罐壁,发生焊缝开裂、浮盘倾斜、密封损坏或因腐蚀减薄甚至穿孔等现象,都会给企业的安全生产带来严重的威胁,一定要严格检查和管理。

(八)储罐附件

对于罐区储罐的安全使用和管理,除了对罐本体监督而言之外,还包括各种安全附件。呼吸阀失灵,阻火器失效,放水阀或排污孑l堵塞、冻坏,加热盘管渗漏,与罐壁连接的软管损坏,以及消防泡沫竖管堵塞等,都会给油罐的安全生产或事故处理带来严重影响,除了应按规范要求进行设计之外,使用过程中还必须保证其处于良好状态。

(九)储罐防腐保温

储罐防腐保温是保证储罐长周期运行和满足工艺条件的重要措施之一。防腐或保温措施不当,会使储罐本体、附件及管线产生局部腐蚀破坏,影响正常使用。个别地方腐蚀加剧,还造成穿孔或开裂跑油;保温层破坏、低温时材料冷脆,都会给企业的安全生产带来一定的威胁。

(十)防雷、防静电接地

防雷、防静电接地装置,是确保储罐和罐区安全的最重要的安全措施之一,应该按规范要求设计、施工防雷、防静电接地装置。此外,必须在每年夏季雷雨季节到来之前,检查引下线和接地极连接的可靠性及接地电阻,确认符合规范要求。此外,还要特别注意消除雷电的静电感应和电磁感应的破坏作用,如发现断裂松脱,影响雷电流通过,或土壤电阻增大,影响雷电流疏散,应立即采取措施处理,保证其满足规范要求。

第5篇 石油化工原料产品运输安全技术措施

一、石油化工原料和产品运输方式石油化工原料和产品运输环节是连接原料基地、生产企业、销售企业、终端用户的纽带和桥梁。按输送方式可以分为管道输送及移动装备输送。移动装备输送又可以大体分为铁路运输、公路运输、水路船舶运输等。附属装备还包括装卸台(铁路和公路装卸台)、码头、泵房等。因为石油化工原料和产品运输环节的面广线长,稍有疏忽就可能酿成事故,所以必须特别注意安全管理和安全技术问题。

二、 石油化工原料和产品的标签和安全技术说明书正如分类中所述的那样,石油化工原料和产品大都属于危险化学品。在生产、使用及运输这些危险化学品过程中,其对职工及环境的潜在危害越来越引起人们的关注。在当今科技和产品不断更新的时代,有关石油化工原料和产品的安全储存、运输和使用的问题也日趋尖锐。随着我国加入wto及经济全球化的发展。迫切需要我们保障石油化工原料和产品的安全储存、运输和使用中的安全。以标签和安全技术说明书的形式进行传播,就是一个很好的途径。国际劳工大会1990年通过的第170号《化学品公约》和177号建议书为建立安全使用化学品国家系统提供了一个基本的框架。在储存运输过程中,正确区分和识别所有的石油化工品(包括无毒害化学品)是至关重要的。中国政府于1995年1月批准了《化学品公约》,并成为亚太地区第一个批准这一公约的国家,这是中国政府促进化学品安全生产和使用的一个承诺。并为达到公约各条款的要求而采取了一系列的措施。最近,中国政府又先后实施了《安全生产法》、《危险化学品安全管理条例》、《使用有毒物品作业场所劳动保护条例》、《国务院关于特大安全事故行政责任追究的规定》等法令、法规,制定了《编写危险化学品技术说明书标准》(类似信息卡)和《编写危险化学品标签导则》等相应的国家标准,全面实施对危险化学品的安全管理和监督。为了使人们能在储存运输过程中,正确区分和识别、安全使用所有的石油化工品,要求生产厂家为生产出厂的石油化工原料和产品设置明显的标签和安全技术说明书,并随石油化工原料和产品运输全过程转移。标签的内容应包括:①商业名称;②物质特性;③供应商的姓名、地址和电话;④危险标志;⑤使用此种物质的特殊风险;⑥安全须知和预防措施;⑦批号;⑧应雇主要求对该物质的安全信息做更详细的说明。标签要求一定要清晰、耐用、大小适当,易于理解。安全技术说明书的内容应包括:①该物质的商业名称和化学名称的统一性说明;②供应企业的地址,以便使用者欲知详情时及时联系;③按国家统一的化学品分类方法标志明显的特性,如毒性、刺激性和爆炸性等;④对该物质的有关危害的详细说明,包括毒性特点、接触界限、储存条件、禁忌介质等;⑤安全须知和预防措施,如应具备基本的通风条件,用橡胶手套保护皮肤避开热源和火源等。告知工人的权利和义务:要为在工作中需要接触和使用石油化工原料和产品的工人做出如下承诺:①工人有权从即将发生危险的现场撤离,但必须立即报告上级主管;②工人有权了解所接触的化学品的特性危害及安全措施;③工人有权阅读标签和信息卡,以保征工人自身安全。为了确保安全,接触化学品工人也要遵循几项义务;①工人应当同雇主紧密合作,执行安全操作计划和现场安全管理;②工人应遵循工作场所的安全操作规程,严禁违章操作;③工人应努力消除或减少对自身或他人造成的危险。例如,一种物质泄漏时可能对邻近岗位造成危害,并在条件允许时事先通知他人,以减少危害。

第6篇 石油化工工艺过程中的防爆安全技术

石油化工行业和其他行业相比,在防爆方面有着特殊的重要性.这主要由其生产 特点决定的. a,石油化工行业爆炸源多,如原料,中间体,成品大多数都是易燃,易爆 物质;同时,生产过程中的点火源很多,如明火,电火花,静电火花都可能成为 爆炸的点 火源.易燃,易爆物质或其蒸汽和氧气等助燃性气体混合达到一定的 比例形成的混合气体遇点火源发生爆炸时,其破坏程度不亚于烈性炸药的威力, 这一特点,决定 了石油化工行业的防火防爆工作的艰巨性. b,石油化工生产具有高温,高压,深冷冻的特点,并且多数介质具有较强 的腐蚀性,加上温度应力,交变应力等的作用,受压容器,设备常常因此而遭到 破坏,从而引起泄漏,造成大面积火灾和爆炸事故. c,石油化工生产具有高度自动化,密闭化,连续化的特点.生产工艺条件 日趋苛刻,操作要求严格,加之新老设备并存,多数设备已运行多年,可靠性下 降,容易发生恶性爆炸事故. d,石油化工工业发展迅速,生产规模不断扩大,加上对新工艺,新技术的 爆炸危险性认识不足, 防爆设计不完善等, 运行中发生爆炸事故损失将十分严重.

氧化, 氧化,还原

1,氧化反应 氧化反应需要加热,反应过程又会放热,特别是催化气相氧化反应一般都是在 250~600℃的高温下进行.有的物质的氧化,如氨在空气中的氧化和甲醇蒸气在 空气中的氧化,其物料配比接近于爆炸下限,倘若配比失调,温度控制不当,极 易爆炸起火. 某些氧化过程中还可能生成危险性较大的过氧化物, 如乙醛氧化生产醋酸的过程 中有过醋酸生成,性质极不稳定,受高温,摩擦或撞击便会分解或燃烧. 对某些强氧化剂,如高锰酸钾,氯酸钾,铬酸酐等,由于其有很强的助燃性,遇 高温或受撞击,摩擦以及与有机物,酸类接触,皆能引起燃烧或爆炸. 氧化过程中,在以空气为氧化剂时,反应物料的配比(反应可燃气体和空气的混 合比例)应控制在爆炸极限范围之外,空气进入反应器之前,应经过气体净化装 置,清除空气中的灰尘,水汽,油污以及可使催化剂活性降低或中毒的杂质以保 持催化剂的活性,减少着火和爆炸的危险. 在催化氧化过程中,对于放热反应,应控制适宜的温度,流量,防止超温超压和 混合气处于爆炸极限范围. 为了防止接触器在万一发生爆炸或燃烧时危及人身和设备安全, 在反应器前后管 道上应安装阻火器,阻止火焰蔓延,防止回火,使燃烧不致影响其他系统.为了 防止接触器发生爆炸,应有泄压装置.应尽可能采用自动控制或调节,以及警报 联锁装置.使用硝酸,高锰酸钾等氧化剂时,要严格控制加料速度,防止多加, 错加.固体氧化剂应该粉碎后使用,最好呈溶液状态使用.反应中要不间断地搅 拌.

使用氧化剂氧化无机物,如使用氯酸钾生产铁蓝颜料时,应控制产品烘干温度不 超过燃点,在烘干之前用清水洗涤产品,将氧化剂彻底除净,防止未起反应的氯 酸钾 引起已烘干的物料起火.有些有机化合物的氧化,特别是在高温下的氧化 反应,在设备及管道内可能产生焦状物,应及时清除以防自燃. 氧化反应系统宜设置氮气或水蒸气灭火装置. 2,还原反应 还原反应有的比较安全,但是有几种还原反应危险性较大,如初生态氢还原和催 化加氢还原等均较危险.无论是利用初生态氢还原,还是用触媒把氢气活化后还 原, 都有氢气存在,氢气的爆炸极限为 4%~75%.特别是催化加氢,大都在加 热加压条件下进行,如果操作失误或因设备缺陷有氢气泄漏,与空气形成爆炸气 体混合 物,遇上火源即能爆炸.操作过程中要严格控制温度,压力和流量;车 间内的电气设备必须符合该爆炸危险区域内的防爆要求, 且不宜在车间顶部敷设 电线及安装电 线接线箱;厂房通风要好,采用轻质屋顶,设置天窗或风帽,使 氢气及时逸出;反应中产生的氢气可用排气管导出车间屋顶,经过阻火器向外排 放;加压反应的设备 要配备安全阀,反应中产生压力的设备要装设爆破板;还 可以安装氢气检测和报警装置. 雷内镍吸潮后在空气中有自燃危险,即使没有火源存在,也能使氢气和空气的混 合物发生爆炸,燃烧.因此,用它们来催化氢气进行还原反应时,必须先用氮气 置换 反应器内的全部空气,经过测定证实含氧量降低到符合要求后,方可通入 氢气. 反应结束后, 应先用氮气把反应器内的氢气置换干净, 方能打开孔盖出料, 以免外界 空气与反应器内的氢气相混,在雷内镍触媒作用下发生燃烧,爆炸. 雷内镍活化后应当储存于酒精中.钯炭回收时要用酒精及清水充分洗涤,过滤抽 真空时不得抽得 太干,以免氧化着火. 用保险粉(na2s2o4)做还原剂时,要注意保险粉遇水发热,在潮湿空气中能分解 析出硫,硫蒸气受热有自燃的危险.保险粉本身受热到 190℃也有分解爆 炸的 危险,应妥善储藏,防止受潮;用水溶解时,要控制温度,可以在开动搅拌的情 况下将保险粉分批加入冷水中,待溶解后,再与有机物接触进行反应. 还原剂硼氢化钾(钠)是一种遇火燃烧物质,在潮湿空气中能自燃,遇水和酸即分 解放出大量氢气,同时产生高热,可使氢气燃烧而引起爆炸事故,应储于密闭容 器 中,置于干燥处,防水防潮并远离火源.在工艺过程中,调节酸,碱度时要 特别注意,防止加酸过快,过多.使用氢化锂铝作还原剂时,要特别注意安全问 题,因为 这种催化剂危险性很大,遇空气和水都能燃烧,必须在氮气保护下使 用,平时浸没于煤油中储存. 上述还原剂遇氧化剂会猛烈发生反应, 产生大量热量, 也有发生燃烧爆炸的危险. 还原反应的中间体,特别是硝基化合物还原反应的中间体具有一定的火灾危险. 例如,邻硝基苯甲醚还原为邻氨基苯甲醚的过程中,产生氧化偶氮苯甲醚,该中 间体受热到 150℃能自燃.苯胺在生产中如果反应条件控制不好,可以生成爆炸 危险性很大的环已胺. 采用危险性小,还原效率高的新型还原剂,对安全生产有很大的意义.例如采用 硫化钠代替铁粉还原,可以避免氢气产生,同时还解决了铁泥堆积的问题.

电解

电解在工业生产中有广泛的应用, 食盐溶液电解是化学工业中最典型的电解反应 例子之一.食盐电解中的安全问题,主要是氯气中毒和腐蚀,碱灼伤,氢气爆炸 以及高温,潮湿和触电危险等.现就防爆问题叙述如下: 在正常操作中,应随时向电解槽的阳极室内添加盐水,使盐水始终保持在规定液 面. 否则, 如盐水液面过低, 氢气有可能通过阴极网渗入到阴极室内与氯气混合. 要 防止个别电解槽氢气出口堵塞,引起阴极室压力升高,造成氯气含氢量过高. 氯气内含氯量达 5%以上,则随时可能在光照或受热情况下发生爆炸.在生产中, 单槽 氯含氢浓度一般控制在 2.0%以下,总管氯含氢浓度控制在 0.4%以下,都应 严格控制.如果电解槽的隔膜吸附质量差;石棉绒质量不好;在安装电解槽时碰 坏隔膜,造成隔膜局部脱落或者在送电前注入的盐水量过大将隔膜冲坏;以及阴 极室中的压力等于或超过阳极室的压力时都可能使氢气进入阳极室, 引起氯含氢 量高.此时应该对电解槽进行全面检查. 盐水有杂质,特别是铁杂质,致使产生第二阴极而放出氢气;氢气压力过大,没 有及时调整;隔膜质量不好,有脱落之处;盐水液面过低,隔膜露出;槽内阴阳 极放 电而烧毁隔膜;以及氢气系统不严密而逸出氢气等,都可能引起电解槽爆 炸或着火事故. 引起氢气或氢气与氯气的混合物燃烧或爆炸的着火源可能是槽体 接地产生的 电火花;断电器因结盐,结碱漏电及氢气管道系统漏电产生电位差 而发生放电火花;排放碱液管道对地绝缘不好而发生放电火花;电解槽内部构件 间由于较大的电位 差或两极之间的距离缩小而发生放电火花;雷击排空管引起 氢气燃烧;以及其他点火源等.水银电解槽若盐水中含有铁,钙,镁等杂质时, 能分解钠汞齐,产生氢气 而引起爆炸.若解汞室的清水温度过低,钠汞齐来不 及在解汞室还原完,就可能在电解槽继续解汞而生成大量氢气,这也是水银电解 发生爆炸的原因之一.因此,加 入的水温应能保持解汞室的温度接近于 95℃, 解汞后汞中含钠量宜低于 0.01%,一般每班应作一次含钠量分析. 由于盐水中带入铵盐,在适宜的条件下(ph 值<4.5 时),铵盐和氯作用产生三氯 化氮,这是一种爆炸性物质.三氯化氮和许多有机物质接触或加热至 90℃以上, 以及被撞击时,即以剧烈爆炸的形式分解.因此在盐水配制系统要严格控制无机 铵含量. 突然停电或其他原因突然停车时,高压阀门不能立即关闭,以避免电解槽中氯气 倒流而发生爆炸. 电解槽食盐水入口处和碱液出口处应考虑采取电气绝缘措施,以免漏电产生火 花.氢气系统与电解槽的阴极箱之间亦应有良好的电气绝缘.整个氢气系统应良 好接地,并设置必要的水封或阻火器等安全装置. 电解食盐厂房应有足够的防爆泄压面积, 并有良好的通风条件, 应安装防雷设施, 保护氢气排空管的避雷针应高出管顶 3m 以上. 电解过程由于有氢气存在,有起火爆炸危险.电解槽应安置在自然通风良好的单 层建筑物内.

聚合

由于聚合物的单体大多是易燃易爆物质,聚合反应多在高压下进行,本身又是放 热过程,如果反应条件控制不当,很容易引起事故. 例如高压聚乙烯反应一般在 13~30mpa 压力下进行,反应过程流体的流速很快, 停留于聚合装置中的时间仅为 10s 到数分钟,温度保持在 150~300℃.在该温度和高压下,乙烯是不稳定的,能分解成碳,甲烷,氢气等.一旦发生裂解,所 产生的热量,可以使裂解过程进一步加速直到爆炸.国内 外都曾发生过聚合反 应器温度异常升高,分离器超压而发生火灾;压缩机爆炸以及反应器管路中安全 阀喷火而后发生爆炸等事故.因此,严格地控制反应条件是十分 重要的.在高 压聚乙烯生产中,主要危险因素有: a.该过程处在高压下,所以当设备和管道的密封有极小损坏时,即会导致气 体大量喷出到车间中,并和空气形成爆炸性气体混合物. b.该过程为放热和热动力不稳定过程.乙烯聚合反应产生的热效应为 96.3kj/mol,所以当热量来不及导出时,会引起乙烯爆炸性分解.

c.乙烯可能在设备和管道中聚合,使温度上升到危险程度,导致乙烯分解和 聚合产品堵塞设备. d.如果违反压力条件和规定的混合气体流量比, 在设备中乙烯和氧气可能形 成易爆混合物. e.乙烯分解时产生的分解细粒状炭黑有可能堵塞反应器和管道, 从而使过程 难以正常进行,以致不得不停产进行设备清理. 由上述危险因素可见,必须对工艺流程的所有工序进行温度,压力和物料流速的 严格自动控制和调节.尤其应该准确地控制乙烯中氧的限制含量,因为当氧含量 超过 允许量时,反应速度将迅速加快,反应热来不及导出,以致使过程反应强 度显著提高,最终使过程由乙烯爆炸性分解为甲烷和碳而结束.此外,当过量供 氧时,还会 形成爆炸性混合物. 高压聚乙烯的聚合反应在开始阶段或聚合反应进行阶段都会发生暴聚反应, 所以 设计时必须充分考虑到这一点.可以添加反应抑制剂或加装安全阀来防止.在紧 急停 车时,聚合物可能固化,停车再开车时,要检查管内是否堵塞.高压部分 应有两重,三重防护措施;要求远距离操作;由压缩机出来的油严禁混入反应系 统,因为油 中含有空气,进入聚合系统能形成爆炸性混合物. 氯乙烯聚合是属于连锁聚合反应, 连锁反应的过程可分为 3 个阶段, 即链的开始, 链的增长,链的终止.聚合反应中链的引发阶段是吸热过程,所以需加热.在链 的 增长阶段又放热,需要将釜内的热量及时导走,将反应温度控制在规定值. 这两个过程要分别向夹套通入加热蒸汽和冷却水.温度控制多采用串级调节系 统.为了及 时导走热量必须有可靠的搅拌装置.由于氯乙烯聚合是采用分批间 歇方式进行的,反应主要依靠调节聚合温度,因此聚合釜的温度自动控制十分重 要. 丁二烯聚合过程中接触和使用酒精,丁二烯,金属钠等危险物质.酒精和丁二烯 与空气混合都能形成爆炸性混合物,金属钠遇水,空气激烈燃烧,引起爆炸,因 此不能暴露于空气中. 为了控制猛烈反应,应有适当的冷却系统,并需严格控制反应温度.冷却系统应 保证密闭良好,特别在使用金属钠的聚合反应中,最好采用不与金属钠反应的十 氢化萘或四氢化萘作为冷却剂.如用冷水做冷却剂,应在微负压下输送,不可用 压力输送.这样可减少水进入聚合釜的机会. 丁二烯聚合釜上应装安全阀,通常的办法是同时安装爆破板.爆破板应装在连接 管上,在其后再连接一个安全阀.这样可以防止安全阀堵塞,又能防止爆破板爆 破时大量可燃气逸出而引起二次爆炸.爆破板不能用铸铁,必须用铜或铝制作, 避免在爆破时铸铁产生火花引起二次爆炸事故. 聚合生产系统应配有氮气保护系统,所用氮气要经过精制,用铜屑除氧,用硅胶  或三氯化铝干燥,纯度保持在 99.5%以上.无论在开始操作或操作完毕打开设备 前,都应该用氮气置换整个系统.当发生故障,温度升高或发现有局部过热现象 时,须立即向设备充入氮气加以保护.正常情况下,操作完毕后,从系统内抽出 气体 是安全生产的一项重要措施,可消除或减少爆炸的可能性,当工艺过程被 破坏,发生事故,不能降低温度或发现局部过热现象时,应将气体抽出,同时往 设备中送入 氮气.以上是在聚合过程中,为了防爆而必须采取的安全措施.

催化和裂化

催化反应分单相反应和多相反应两种,单相反应是在气 态下或液态下进行的, 危险性较小, 因为在这种情况下, 反应过程中的温度, 压力及其他条件较易调节. 在多相反应中,催化作用发生于相界面及催化剂的表面上, 这时温度,压力较 难控制.从防爆安全要求来看,催化过程中除要正确选择催化剂外,要注意散热 需良好;催化剂加量适当,防止局部反应激烈;并注意严格控制温 度.采用温 度自动调节系统,就可以减少其危险性. 在催化反应过程中有的产生氯化氢,有腐蚀和中毒危险;有的产生硫化氢,则中 毒危险性更大.另外,硫化氢在空气中的爆炸极限较宽(4.3%~45.5%), 生产过 程还有爆炸危险. 在产生氢气的催化反应中, 有更大的爆炸危险性, 尤其高压下, 氢的腐蚀作用使金属高压容器脆化,从而造成破坏性事故. 如原料气中某种能与催化剂发生反应的杂质含量增加,就可能生产爆炸危险物, 也是非常危险的.例如,在乙烯催化氧化合成乙醛的反应中,由于在催化剂体系 中含 有大量的亚铜盐,若原料气含乙炔过高,则乙炔与亚铜会反应生成乙炔铜. 乙炔铜呈红色,自燃点是 260~270℃,干燥状态下极易爆炸,在空气作用下易 氧化 成暗黑色,并易起火. 裂化可分为热裂化,催化裂化,加氢裂化 3 种类型. 1,热裂化 热裂化在加热和加压下进行.根据所用压力的高低分高压热裂化和低压热裂化. 高压热裂化在较低温度(约 450~550℃)和较高压力(2~7mpa)下进 行,低压热 裂化在较高温度(约 550~770℃)和较低压力(0.1~0.5mpa)下进行.处于高温下 的裂解气,要直接喷水急冷,如果因停水和水压不 足,或因操作失误,气体压 力大于水压而冷却不下来,会烧坏设备从而引起火灾.为了防止此类事故发生, 应配备两种电源和水源.操作时,要保证水压大于气压, 发现停水或气压大于 水压时要紧急放空. 裂解后的产品多数是以液态储存,有一定的压力,如有不严之处,储槽中的物料 就会散发出来,遇明火发生爆炸.高压容器和管线要求不泄漏,并应安装安全装 置和事故放空装置.压缩机房应安装固定的蒸汽灭火装置,其开关设在外边易接 近的地方.机械设备,管线必须安装完备的静电接地和避雷装置. 分离主要是在气相下进行的,所分离的气体均有火灾爆炸危险,如果设备系统不 严密或操作错误泄漏可燃气体,与空气混合形成爆炸性气体混合物,遇火源就会 燃烧 或爆炸.分离都是在压力下进行的,原料经压缩机压缩有较高的压力,若 设备材质不良,误操作造成负压或超压;或者因压缩机冷却不好,设备因腐蚀, 裂缝而泄漏 物料,就会发生设备爆炸和油料着火.再者,分离又大都在低温下

进行,操作温度有的低达-30~100℃.在这样的低温条件下,如果原料气或设备 系统含水, 就会发生冻结堵塞,以至引起爆炸起火. 分离的物质在装置系统内流动, 尤其在压力下输送, 易产生静电火花, 引起燃烧, 因此应该有完善的消除静电的措施.分离塔设备均应安装安全阀和放空管;低压 系 统和高压系统之间应有止逆阀;配备固定的氮气装置,蒸汽灭火装置.操作 过程中要严格控制温度和压力.发生事故需要停车时,要停压缩机,关闭阀门, 切断与其 他系统的通路,并迅速开启系统放空阀,再用氮气或水蒸气,高压水 等扑救.放空时应当先放液相后放气相. 2,催化裂化 催化裂化装置主要由 3 个系统组成,即反应再生系统,分馏系统以及吸收稳定系 统.在生产过程中,这 3 个系统是紧密相连的整体.反应系统的变化很快地影响 到分 馏和吸收稳定系统,后两个系统的变化反过程又影响到反应部分.在反应 器和再生器间, 催化剂悬浮在气流中, 整个床层温度要保持均匀, 避免局部过热, 造成事 故. 两器压差保持稳定,是催化裂化反应中最重要的安全问题,两器压差一定不能超 过规定的范围.目的就是要使两器之间的催化剂沿一定方向流动,避免倒流,造 成油 气与空气混合发生爆炸.当维持不住两器压差时,应迅速启动自动保护系 统,关闭两器间的单动滑阀.在两器内存有催化剂的情况下,必须通以流化介质 维持流动状 态,防止造成死床.正常操作时,主风量和进料量不能低于流化所 需的最低值,否则应通入一定量的事故蒸汽,以保护系统内正常流化态度,保证 压差的稳定.当主 风量由于某种原因停止时,应当自动切断反应器进料,同时 启动主风与原料及增压风自动保护系统,向再生器与反应器,提升管内通入流化 介质,而原料则经事故旁 通线进入回炼罐或分馏塔,切断进料,并应保持系统 的热量.催化裂化装置关键设备应当具有两路以上的供电电源,自动切换装置应 经常检查,保持灵敏好用,当其 中一路停电时,另一路能在几秒内自动合闸送 电,保持装置的正常运行. 3,加氢裂化 加氢裂化是在有催化剂及氢气存在下, 使蜡油通过裂化反应转化为质量较好的汽 油,煤油和柴油等轻质油.它与催化裂化不同的是在进行裂化反应时,同时伴有 烃类加氢反应,异构化反应等,所以称加氢裂化. 由于反应温度和压力均较高,又接触大量氢气,火灾爆炸危险性较大.加热炉平 稳操作对整个装置安全运行十分重要,要防止设备局部过热,防止加热炉的炉管 烧穿或者高温管线,反应器漏气.高压下钢与氢气接触易产生氢脆.因此应加强 检查,定期更换管道和设备.

硝化和氯化 硝化和氯化

硝化反应是强烈放热的反应,故硝化需在降温条件下进行.因为温度控制是安全 的基础,所以应当安装温度自动调节装置. 常用的硝化剂是混酸(浓硝酸与浓硫酸的混合物)制备混酸时放出大量热, 温度可 达到 90℃或更高.在这个温度下,硝酸部分分解为二氧化氮和水,假若有部分 硝基物生成,高温下可能引起爆炸. 硝化器夹套中冷却水压力微呈负压,在水引入管上,必须安装压力计,在进水管 及排水管上都需要安装温度计.应严防冷却水因夹套焊缝腐蚀而漏入硝化物中,

因硝化物遇到水后温度急剧上升,反应进行很快,可分解产生气体物质而发生爆 炸. 为严格控制硝化反应温度, 应控制好加料速度, 硝化剂加料应采用双重阀门控制. 搅拌机应有自动启动的备用电源,以防止机械搅拌在突然断电时停止而引起事 故, 搅拌轴采用硫酸作润滑剂,温度套管用硫酸作导热剂.不可使用普通机械 油或甘油,防止它们被硝化而形成爆炸性物质.由填料出落入硝化器中的油能引 起爆炸事 故,因此,在硝化器盖上不得放置用油浸过的填料.在搅拌器的轴上, 应备有小槽,借以防止齿轮上的油落入硝化器中. 硝化过程中最危险的是有机物质的氧化, 其特点是放出大量氧化氮气体的褐色蒸 气并使混合物的温度迅速升高,引起硝化混合物从设备中喷出而引起爆炸事故. 仔细地配制反应混合物并除去其中易氧化的组分, 调节温度及连续混合是防止硝 化过程中发生氧化作用的主要措施. 由于硝基化合物具有爆炸性,同时必须特别注意处理此类物质过程中的危险性. 例如,二硝基苯酚甚至在高温下也无危险,但当形成二硝基苯酚盐时,则变为危 险物质.三硝基苯酚盐(特别是铅盐)的爆炸力是很大的.在蒸馏硝基化合物时, 必须特别小心. 硝化设备应确保严密不漏, 防止硝化物料溅到蒸气管道等高温表面上而引起爆炸 或燃烧.如管道堵塞时,可用蒸汽加温疏通,切不可用金属棒敲打或明火加热. 车间内禁止带入火种,电气设备要防爆.当设备需动火检修时,应拆卸设备和管 道,并移至车间外安全地点,用水蒸汽反复冲刷残留物质,经分析合格后,方可 施焊.需要报废的管道,应专门处理后堆放起来,不可随便挪用,避免意外事故 发生. 氯是强氧化剂,能与可燃气体形成易爆混合物.氯代烃与空气和氧气也能形成易 爆混合物.氯与氢的混合物的爆炸浓度极限范围更宽.氯和可燃烃类,醇,羧酸 和氯 代烃的二元混合物在绝大多数情况下容易爆炸.众所周知,许多烃(乙烯, 丙烯,正丁烯,正戊烯)能在 100℃温度下,甚至在室温下以明显的速度与氯气 反应, 生成含氯产物.当烯烃与氯气形成混合物并将它加热时,可能产生由绝 热反应引起的自燃.所以在一定条件下,工艺设备中会发生自行加速过程,并进 而转为爆炸. 乙炔加入氯气的反应过程非常剧烈,添加少量氧对这一反应可起 催化作用.在氧存在下,乙炔与氯气在室温,甚至-78℃下即能相互作用,并引 起爆炸.乙炔和氯 气的相互作用会引发乙炔爆炸性分解.含氯的可燃混合物具 有低温自燃特性,当形成爆炸性混合物时,这一特性会增加引起燃烧的危险性. 氯化过程的特点是被氯化的大多数烃和获得的一氯或二氯代衍生物能与空气或 氧气形成爆炸性混合物,所以氯化过程的设备构造,控制和自动化系统均应不让 可燃产物有可能与氧气或空气形成爆炸性混合物. 反应时放热量大和与乙炔等不 饱和烃作用时氯有活性是氯化过程的主要危险. 在化工生产中,最常用的氯化剂是氯气,它通常液化储存和运输. 储罐中的液氯在进入氯化器使用之前必须先进入蒸发器使其气化. 通常不能把储 存氯气的气瓶或槽车当储罐使用, 因为这样有可能使被氯化的有机物质倒流进气 瓶或槽车而引起爆炸.对于一般氯化器应装设氯气缓冲罐,防止氯气断流或压力 减小时形成倒流. 氯化反应的危险性主要决定于被氯化物质的性质及反应过程的控制条件. 由于氯 气本身的毒性较大,储存压力较高,一旦泄漏是很危险的.反应过程所用的原料 大多 是有机物,易燃易爆,所以生产过程有燃烧爆炸危险,应严格控制各种点

火能源,电气设备应符合防爆的要求.氯化反应是一个放热过程,尤其在较高温 度下进行氯 化,反应更为激烈.例如环氧氯丙烷生产中,丙烯预热至 300℃左 右进行氯化,反应温度可升至 500℃,在这样高的温度下,如果物料泄漏就会造 成燃烧或引起 爆炸.因此,一般氯化反应设备必须备有良好的冷却系统,并严 格控制氯气的流量.

第7篇 石油化工企业检修过程中的动火管理安全技术措施

石油化工企业的生产装置主要有精馏、吸收、离心、和加热、压缩、配电、水循环、污水处理等公用配套设施,生产过程中使用的物料主要是多种易燃、易爆、腐蚀、有毒物料,对安全生产管理要求很高,特别是检修过程中的动火管理是关系到员工的人身安全和企业稳定发展的重要因素。

由于石油化工企业生产工艺的更新速度快、及时调整,设备管道在使用过程中因受内部介质的压力、温度、腐蚀等作用,或因结构、材料、焊接工艺等先天缺陷,在生产过程中随时需要抢修,电焊、气割、塑焊等动火十分频繁,平均每天动火都在很多处,时间紧、任务重,工作中容易出现马虎和纰漏。如果不能严格执行动火管理制度,不采取必要的清洗、置换、监控等措施,就会引起火灾、爆炸、灼伤和中毒等事故,影响企业的生产经营活动和员工的人身安全。

动火管理安全技术措施的目标是两个确保:一是确保动火设备管道内部没有易燃物,二是确保动火设备管道周边没有可燃物。要做到两个确保,必须牢固树立“安全第一,预防为主”的指导思想,正确认识动火管理的重要性,增强安全意识,切实实施切断、隔离、清洗、置换、通风等安全技术措施,按程序做好申请、变更、批准、施工、监护、清理、验收等安全管理措施。

针对一个需要动火的某个生产单元,某一台贮罐或某一台设备,一定要清楚容器内部和外部物料的易燃、易爆、腐蚀、有毒物料的危险特性,采取以下有针对性的安全技术措施:

一是将动火物件移动到固定动火区动火

为便于管理,可以设立固定动火区。凡可拆卸并有条件移动到固定动火区焊割的物件,必须移至固定动火区内焊割,从而减少在生产车间或厂房内的动火工作。 固定动火区也必须做好相应的安全对策:要进行适度清洗置换,没有可燃物; 设备、管道及周围l5米范围内没有可燃物料;设备、管道在动火过程中物料分解放出可燃气体时,可燃气体或蒸汽不能扩散到其他场所;要配备相应数量的灭火器材; 作业区周围要划定界限,设立警示牌,禁止无关人员入内。

二是卸压和卸料

为避免设备管道因降温降压收缩不均匀,易产生应力而损坏的特点,要缓慢降低设备内的压力和温度,同时接好静电接地线。将设备内物料接入符合要求的产品贮存场所,在退料过程中严格控制退料速度符合规定,并注意观察有无异常情况。

三是切断隔离

现场检修,要停止与待检修设备相连接的运转设备系统。 隔断与此台设备相连接的所有进出管,使检修、焊割的设备与其他设备(特别是正常生产的设备)完全隔绝,以保证可燃物料等不能扩散到其他设备及其周围。可靠的隔绝方法是安装盲板或拆除一段连接管线。盲板的材料、规格和加工精度等技术条件一定要符合国家标准,不可滥用,并正确装配。必须保证盲板有足够的强度,能承受管道的工作压力,同时密闭不漏;盲板应安装在法兰的进口侧;盲板厚度应不低于管壁厚度;盲板应有突耳,并用明显的颜色予以标记;要用有符合规定的盲板材料。

对拆除的管路,注意在生产系统或存有物料的一侧关闭阀门。还应注意常压敞口设备的空间隔绝,保证火星不能与其他容器口逸散出来的可燃气体接触。

四是清洗

容器及管道置换处理后,其内外部必须仔细清洗。因为,有些可燃易爆介质被吸附在设备及管道内壁的积垢或外表面的保温材料中,液体可燃物会附着在容器及管道的内壁上。如不彻底清洗,由于温度和压力变化的影响,可燃物会逐渐释放出来,使本来合格的动火条件变成了不合格,从而导致火灾爆炸事故。

清洗可用热水蒸煮、碱洗、酸洗,使设备及管道内壁上的结垢物等软化溶解而除去。采用何种方法清洗应根据工艺技术的特点确定。用蒸汽和清水对设备及其连接的管道(指切断隔离点与设备连接管)交叉清洗,原则要求不少于二遍;碱洗是用氢氧化钠水溶液进行清洗,其清洗过程是:先在容器中加入所需数量的清水,然后把定量的碱片或液碱分批逐渐加人,同时缓慢搅动,待全部碱片或液碱全部加入并完全溶解后,方可通入水蒸汽煮沸。蒸汽管的末端必须伸至液体的底部,以防通入水蒸汽后有碱液泡沫溅出。禁止先放碱片后加清水(尤其是热水),因为烧碱溶解时会产生大量的热,涌出容器管道会灼伤操作者。酸洗是在水中加入适量盐酸并搅拌。先碱洗后酸洗,也可交叉进行,目的是除去设备管道内的氧化铁积存物和酸碱及油类物质。

对于用酸碱清洗法不能除尽的垢物,可用木质、黄铜(含铜70%以下)或铝质的刀、刷等方法铲除 。最后用清水冲洗干净。对地面、地沟和周边设备用蒸汽和清水冲洗干净。

五是置换

做好隔绝清洗工作之后,把容器及管道内的可燃性或有毒性介质彻底置换。 常用的置换介质有氮气、氩气等。置换的方法要视被置换介质与置换介质的比重而定,如果物料的比重大于氮气的比重,氮气应从釜上入口进,从釜下出口排出,如果物料的比重小于氮气的比重,氮气应从釜下入口进,从釜上排出,如比重相差不大,此时应注意置换的不彻底或两者相互混合。置换气体用量一般为被置换介质容积的3倍以上。以水为置换介质时,将设备管道灌满并有水从最高点溢出。

六是通风与检测

应打开容器的人孔、手孔、物料孔等,自然通风冷却,也可以用鼓风机对设备内部进行强制通风,通风冷却的同时可增加设备内部的氧气含量。

动火检测分析就是对设备和管道以及周围环境的气体进行取样分析。动火分析不但能保证开始动火时符合动火条件,而且可以掌握焊割过程中动火条件的变化情况。在置换作业过程中和动火作业前,应不断从容器及管道内外的不同部位采取气体样品进行分析,检查易燃、易爆气体及有毒、有害气体的含量。检查合格后,应尽快实施焊割,动火前半小时内分析数据是有效的,否则应重新取样分析。取样要有代表性,以使数据准确可靠。焊割开始后每隔一定时间仍需对作业现场环境作分析,动火分析的时间间隔则根据现场情况来确定,正常是不超过2小时。若有关气体含量超过规定要求,应立即停止焊割,再次清洗置换并取样分析,直到合格为止。

气体分析的合格要求是:可燃气体或可燃蒸汽的含量:爆炸下限大于4%的,浓度应小于0.5%;爆炸下限小于4%,浓度则应小于0.2%;有毒有害气体的含量应符合《工业企业设计卫生标准》的规定;操作者需进入内部进行焊割的设备及管道,氧气含量应为18%~21%。检测可燃气体含量或可燃蒸汽的爆炸范围的方法主要是用易燃易爆检测仪自动检测。

在容器及管道内需采用气焊或气割时,焊、割炬的点火与熄灭应在容器外部进行,以防过多的乙炔气聚集在容器及管道内。

七是审批

由生产车间或项目负责人对现场进行检查,重点是设备及管道内部和周边环境及地沟是否确保没有可燃物。由生产车间或项目负责人到安全管理部门申请动火作业证。安全管理部门的安全管理人员应该到现场核查,符合动火条件予以批准,不符合动火条件要说明情况落实重新清洗置换的措施。对有较大易燃、易爆、腐蚀、有毒物料特殊作业场所动火,安全管理部门要会同生产、技术、设备等部门共同制定审查动火方案并报公司分管安全的副总经理审批。

八是动火

动火人要查验动火证并熟悉作业现场情况。如不符合动火条件,有权拒绝执行并立即向公司安全管理人员报告。在动火过程中要及时观察周边环境变化,如有异常立即停止动火并报告。特殊作业动火主要有带压不置换动火和登高焊割动火。带压不置换动火,就是严格控制含氧量,使可燃气体的浓度大大超过爆炸上限,然后让它以稳定的速度,从管道口向外喷出,并点燃燃烧,使其与周围空气形成一个燃烧系统,并保持稳定地连续燃烧。然后,即可进行焊补作业。

带压不置换动火法不需要置换原有的气体,有时可以在设备运转的情况下进行,作业时间短,有利于生产。这种方法主要适用于可燃气体的容器与管道的外部焊补。由于这种方法只能在连续保持一定正压的情况下才能进行,控制难度较大,而且没有一定的压力就不能使用,有较大的局限性,也有较大风险性。因此,为增加安全保险系数,一般化工企业原则要求不准使用此办法动火。

登高焊割动火是离开基准面2米以上(包括2米)有可能坠落的高处进行焊接与切割的作业(含周边有坑、槽、沟和斜坡)。主要是在各种塔器和车间外部管架上动火。高处焊接与切割作业将高处作业和焊接与切割作业的危险因素叠加起来,增加了危险性。其安全问题主要是防坠落、防触电、防火、防爆以及其个人防护等。因此,高处焊接与切割作业除应严格遵守一般焊接与切割的安全要求外,还必须遵守的主要安全措施有:登高进行焊割作业者,衣着要轻便,戴好安全帽,穿胶底鞋,禁止穿硬底鞋和带钉易滑的鞋;要使用标准的防火安全带,不能用耐热性差的尼龙安全带,而且安全带应牢固可靠,长度适宜,高挂低用;在高处进行焊割作业时,为防止火花或飞溅引起燃烧和爆炸事故,应把动火点下部的易燃易爆物移至安全地点;对确实无法移动的可燃物品要采取可靠的防护措施,例如用彩钢板或防火毯覆盖遮严;在允许的情况下,还可将可燃物喷水淋湿,增强耐火性能;高处焊割作业,火星飞得远,散落面大,应注意风向风力,用水管及时浇灭溅落的火花;对下风方向的安全距离应根据实际情况增大,以确保安全。还应注意相近车间的地沟中有无可燃液体流出。

九是监火

监火人必须是本岗位二操以上人员,懂生产操作规程,懂灭火器材的使用方法,懂报警方法,懂急救措施,工作责任心强,动作敏捷,站在便于观察周边情况和便于扑灭溅落火花的位置。配置足够的灭火器,备用浇灭火花的水管或蒸汽管。戴好安全帽。监火期间不得离岗,不得兼作其他工作。特殊情况需短暂离岗必须落实人员临时代替。较大危险岗位监火要安排二人或二人以上。

十是清扫与验收

动火结束后,要在手续齐全的情况下拆除盲板,连接好相关管道,同时要防止物料泄漏溅落。监火人要会同动火人清扫动火现场,防止有遗留火种。符合安全要求后方可离开现场,并及时向车间主任或项目负责人报告任务完成情况。

十一是设备试压

对动火维修以后的设备及管道在使用前应进行试压,检查焊接点泄漏情况。试压方式主要有水压和气压。对密封要求较高的设备管道在气压试验过程中可以用肥皂水检查,也可以在惰性气体中加入体积比为1%的氨气,在检查点贴上硝酸银试纸,如试纸发黑则是泄漏点。在恢复生产过程中均应视情况缓慢进行,不可急升急降。

十二是非正常情况不动火

在雨、雪、浓雾天气,夜晚,六级以上大风,重要节假日,高温季节中午室外动火,如果不是生产非常急需,原则要求不动火。在动火过程中如有登高,进罐作业还要按规定办理登高作业证,进罐作业证。

动火管理是一个动态的全过程安全管理。更重要的是要有较强的安全防范意识,时刻绷紧安全生产这根弦,切实掌握石油化工企业检修过程中安全生产动火管理的安全技术措施知识,进一步提高安全生产综合技能,也才能更有效地保障企业员工人身安全和企业财产的安全,为企业的快速稳定发展打好基础

冬季如何做好化学危险品的消防安全

化学危险物品是指具有爆炸、燃烧、毒害、腐蚀等危险性质,在生产、储存、运输、使用、保存过程中,在一定条件下能引起燃烧、爆炸,导致人员伤亡和财产损失的物品。一般来讲,化学危险物品在夏季易发生事故,冬季的气候条件同样能引起化学危险物品的诸多危险。

首先,应保证室内通风良好。在冬季,尤其在北方,气温较低,人们为了御寒,在生产、储存场所,经常把门窗关闭得严严实实, 使现场通风条件较差,而易燃易爆的气体和液体在此条件下仍会挥发,这就会使其局部范围内积聚,在空气中可燃气体成蒸汽浓度达到爆炸浓度极限范围时,遇到火源就会引起爆炸引起火灾。同时,因密闭较严,安全出口不畅,泄压面积不够,更容易造成惨重损失和伤亡。

其次,防止雨雾侵入。冬季雨雪天气,对于遇水或受潮后易引发危险的化学危险物品的贮存和运输要特别重视。

第三,做好防静电工作。冬季,天干物燥,空气相对湿度小,化学危险物品尤其是液体、气体,在生产、运输、使用过程中极易产生静电,而对气体、液体来讲,其点火最低能量很小。 所以在冬季,防止静电危害显得更为重要。冬季来临,应对静电接地点进行测量,使其接地电阻符合要求;进入此类场所的人员必须穿着防静电工作服,并且在进入前,采取提前将静电释放等方法防止静电危害。

第四,雨雪天气,运输过程中应注意行车安全。冬季多雨雪天气,会造成交通状况恶劣,尤其对汽车运输在雨雪天气行车时,首先应注意提前检修车辆,使其保持良好的技术状态,尤其是制动、方向操纵、方向指示等部分,必须保证绝对良好;其次,恶劣天气的行车,要保持低车速,特别遇有通过泥泞、积雪、结冰等危险路段或遇有警告标志的,车辆行驶时速不应超过15公里,并避免使用紧急刹车或急速转向,与同方向行驶的车辆之间保持不小于30米的安全距离。

第五,采暖保温要求。冬季气温较低,对于低温下易冻结而发生危险的物品,用什么方法保温、怎样解冻要特别小心,严禁采用明火取暖,对于必要采暖场所,应按要求采用水暖,并保持安全距离。化学危险物品受冻时,严禁明火烘烤,只允许用温水或蒸汽缓慢化冻。另外,对于家庭用液化石油气罐钢瓶,冬季充装不宜过满,因室内外温差较大,当钢瓶由室外进入室内时,钢瓶会因受环境温差影响使内压升高而膨胀,引起爆炸事故。

第8篇 典型石油化工工艺过程中的防爆安全技术

摘  要 介绍了典型石油化工工艺过程中产生爆炸的原因,提出了石油化工安全生产过程中应注意的事项和杜绝爆炸的具体措施。

关键词 石油化工 工艺过程 安全生产 防爆 措施

1 前言

石油化工行业和其他行业相比,在防爆方面有着特殊的重要性。这主要由其生产特点决定的。

a.石油化工行业爆炸源多,如原料、中间体、成品大多数都是易燃、易爆物质;同时,生产过程中的点火源很多,如明火、电火花、静电火花都可能成为爆炸的点火源。易燃、易爆物质或其蒸汽和氧气等助燃性气体混合达到一定的比例形成的混合气体遇点火源发生爆炸时,其破坏程度不亚于烈性炸药的威力,这一特点,决定了石油化工行业的防火防爆工作的艰巨性。

b.石油化工生产具有高温、高压、深冷冻的特点,并且多数介质具有较强的腐蚀性,加上温度应力,交变应力等的作用,受压容器、设备常常因此而遭到破坏,从而引起泄漏,造成大面积火灾和爆炸事故。

c.石油化工生产具有高度自动化、密闭化、连续化的特点。生产工艺条件日趋苛刻,操作要求严格,加之新老设备并存,多数设备已运行多年,可靠性下降,容易发生恶性爆炸事故。

d.石油化工工业发展迅速,生产规模不断扩大,加上对新工艺、新技术的爆炸危险性认识不足,防爆设计不完善等,运行中发生爆炸事故损失将十分严重。

2 氧化还原

2.1 氧化反应

氧化反应需要加热,反应过程又会放热,特别是催化气相氧化反应一般都是在250~600℃的高温下进行。有的物质的氧化,如氨在空气中的氧化和甲醇蒸气在空气中的氧化,其物料配比接近于爆炸下限,倘若配比失调,温度控制不当,极易爆炸起火。

某些氧化过程中还可能生成危险性较大的过氧化物,如乙醛氧化生产醋酸的过程中有过醋酸生成,性质极不稳定,受高温、摩擦或撞击便会分解或燃烧。

对某些强氧化剂,如高锰酸钾、氯酸钾、铬酸酐等,由于其有很强的助燃性,遇高温或受撞击、摩擦以及与有机物、酸类接触,皆能引起燃烧或爆炸。

氧化过程中,在以空气为氧化剂时,反应物料的配比(反应可燃气体和空气的混合比例)应控制在爆炸极限范围之外,空气进入反应器之前,应经过气体净化装置,清除空气中的灰尘、水汽、油污以及可使催化剂活性降低或中毒的杂质以保持催化剂的活性,减少着火和爆炸的危险。

在催化氧化过程中,对于放热反应,应控制适宜的温度、流量,防止超温超压和混合气处于爆炸极限范围。

为了防止接触器在万一发生爆炸或燃烧时危及人身和设备安全,在反应器前后管道上应安装阻火器,阻止火焰蔓延,防止回火,使燃烧不致影响其他系统。为了防止接触器发生爆炸,应有泄压装置。应尽可能采用自动控制或调节,以及警报联锁装置。使用硝酸、高锰酸钾等氧化剂时,要严格控制加料速度,防止多加、错加。固体氧化剂应该粉碎后使用,最好呈溶液状态使用。反应中要不间断地搅拌。

使用氧化剂氧化无机物,如使用氯酸钾生产铁蓝颜料时,应控制产品烘干温度不超过燃点,在烘干之前用清水洗涤产品,将氧化剂彻底除净,防止未起反应的氯酸钾引起已烘干的物料起火。有些有机化合物的氧化,特别是在高温下的氧化反应,在设备及管道内可能产生焦状物,应及时清除以防自燃。

氧化反应系统宜设置氮气或水蒸气灭火装置。

2.2 还原反应

还原反应有的比较安全,但是有几种还原反应危险性较大,如初生态氢还原和催化加氢还原等均较危险。无论是利用初生态氢还原,还是用触媒把氢气活化后还原,都有氢气存在,氢气的爆炸极限为4%~75%。特别是催化加氢,大都在加热加压条件下进行,如果操作失误或因设备缺陷有氢气泄漏,与空气形成爆炸气体混合物,遇上火源即能爆炸。操作过程中要严格控制温度、压力和流量;车间内的电气设备必须符合该爆炸危险区域内的防爆要求,且不宜在车间顶部敷设电线及安装电线接线箱;厂房通风要好,采用轻质屋顶,设置天窗或风帽,使氢气及时逸出;反应中产生的氢气可用排气管导出车间屋顶,经过阻火器向外排放;加压反应的设备要配备安全阀,反应中产生压力的设备要装设爆破板;还可以安装氢气检测和报警装置。

雷内镍吸潮后在空气中有自燃危险,即使没有火源存在,也能使氢气和空气的混合物发生爆炸、燃烧。因此,用它们来催化氢气进行还原反应时,必须先用氮气置换反应器内的全部空气,经过测定证实含氧量降低到符合要求后,方可通入氢气。反应结束后,应先用氮气把反应器内的氢气置换干净,方能打开孔盖出料,以免外界空气与反应器内的氢气相混,在雷内镍触媒作用下发生燃烧、爆炸。雷内镍活化后应当储存于酒精中。钯炭回收时要用酒精及清水充分洗涤,过滤抽真空时不得抽得太干,以免氧化着火。

用保险粉(na2s2o4)做还原剂时,要注意保险粉遇水发热,在潮湿空气中能分解析出硫,硫蒸气受热有自燃的危险。保险粉本身受热到190℃也有分解爆炸的危险,应妥善储藏,防止受潮;用水溶解时,要控制温度,可以在开动搅拌的情况下将保险粉分批加入冷水中,待溶解后,再与有机物接触进行反应。

还原剂硼氢化钾(钠)是一种遇火燃烧物质,在潮湿空气中能自燃,遇水和酸即分解放出大量氢气,同时产生高热,可使氢气燃烧而引起爆炸事故,应储于密闭容器中,置于干燥处,防水防潮并远离火源。在工艺过程中,调节酸、碱度时要特别注意,防止加酸过快、过多。使用氢化锂铝作还原剂时,要特别注意安全问题,因为这种催化剂危险性很大,遇空气和水都能燃烧,必须在氮气保护下使用,平时浸没于煤油中储存。

上述还原剂遇氧化剂会猛烈发生反应,产生大量热量,也有发生燃烧爆炸的危险。

还原反应的中间体,特别是硝基化合物还原反应的中间体具有一定的火灾危险。例如,邻硝基苯甲醚还原为邻氨基苯甲醚的过程中,产生氧化偶氮苯甲醚,该中间体受热到150℃能自燃。苯胺在生产中如果反应条件控制不好,可以生成爆炸危险性很大的环已胺。

采用危险性小,还原效率高的新型还原剂,对安全生产有很大的意义。例如采用硫化钠代替铁粉还原,可以避免氢气产生,同时还解决了铁泥堆积的问题。

3 电解

电解在工业生产中有广泛的应用,食盐溶液电解是化学工业中最典型的电解反应例子之一。食盐电解中的安全问题,主要是氯气中毒和腐蚀、碱灼伤、氢气爆炸以及高温、潮湿和触电危险等。现就防爆问题叙述如下:

在正常操作中,应随时向电解槽的阳极室内添加盐水,使盐水始终保持在规定液面。否则,如盐水液面过低,氢气有可能通过阴极网渗入到阴极室内与氯气混合。要防止个别电解槽氢气出口堵塞,引起阴极室压力升高,造成氯气含氢量过高。氯气内含氯量达5%以上,则随时可能在光照或受热情况下发生爆炸。在生产中,单槽氯含氢浓度一般控制在2.0%以下,总管氯含氢浓度控制在0.4%以下,都应严格控制。如果电解槽的隔膜吸附质量差;石棉绒质量不好;在安装电解槽时碰坏隔膜,造成隔膜局部脱落或者在送电前注入的盐水量过大将隔膜冲坏;以及阴极室中的压力等于或超过阳极室的压力时都可能使氢气进入阳极室,引起氯含氢量高。此时应该对电解槽进行全面检查。

盐水有杂质,特别是铁杂质,致使产生第二阴极而放出氢气;氢气压力过大,没有及时调整;隔膜质量不好,有脱落之处;盐水液面过低,隔膜露出;槽内阴阳极放电而烧毁隔膜;以及氢气系统不严密而逸出氢气等,都可能引起电解槽爆炸或着火事故。引起氢气或氢气与氯气的混合物燃烧或爆炸的着火源可能是槽体接地产生的电火花;断电器因结盐、结碱漏电及氢气管道系统漏电产生电位差而发生放电火花;排放碱液管道对地绝缘不好而发生放电火花;电解槽内部构件间由于较大的电位差或两极之间的距离缩小而发生放电火花;雷击排空管引起氢气燃烧;以及其他点火源等。水银电解槽若盐水中含有铁、钙、镁等杂质时,能分解钠汞齐,产生氢气而引起爆炸。若解汞室的清水温度过低,钠汞齐来不及在解汞室还原完,就可能在电解槽继续解汞而生成大量氢气,这也是水银电解发生爆炸的原因之一。因此,加入的水温应能保持解汞室的温度接近于95℃,解汞后汞中含钠量宜低于0.01%,一般每班应作一次含钠量分析。

由于盐水中带入铵盐,在适宜的条件下(ph值<4.5时),铵盐和氯作用产生三氯化氮,这是一种爆炸性物质。三氯化氮和许多有机物质接触或加热至90℃以上,以及被撞击时,即以剧烈爆炸的形式分解。因此在盐水配制系统要严格控制无机铵含量。

突然停电或其他原因突然停车时,高压阀门不能立即关闭,以避免电解槽中氯气倒流而发生爆炸。

电解槽食盐水入口处和碱液出口处应考虑采取电气绝缘措施,以免漏电产生火花。氢气系统与电解槽的阴极箱之间亦应有良好的电气绝缘。整个氢气系统应良好接地,并设置必要的水封或阻火器等安全装置。

电解食盐厂房应有足够的防爆泄压面积,并有良好的通风条件,应安装防雷设施,保护氢气排空管的避雷针应高出管顶3m以上。

电解过程由于有氢气存在,有起火爆炸危险。电解槽应安置在自然通风良好的单层建筑物内。

4 聚合

由于聚合物的单体大多是易燃易爆物质,聚合反应多在高压下进行,本身又是放热过程,如果反应条件控制不当,很容易引起事故。

例如高压聚乙烯反应一般在13~30mpa压力下进行,反应过程流体的流速很快,停留于聚合装置中的时间仅为10s到数分钟,温度保持在150~300℃。在该温度和高压下,乙烯是不稳定的,能分解成碳、甲烷、氢气等。一旦发生裂解,所产生的热量,可以使裂解过程进一步加速直到爆炸。国内外都曾发生过聚合反应器温度异常升高,分离器超压而发生火灾;压缩机爆炸以及反应器管路中安全阀喷火而后发生爆炸等事故。因此,严格地控制反应条件是十分重要的。在高压聚乙烯生产中,主要危险因素有:

a.该过程处在高压下,所以当设备和管道的密封有极小损坏时,即会导致气体大量喷出到车间中,并和空气形成爆炸性气体混合物。

b.该过程为放热和热动力不稳定过程。乙烯聚合反应产生的热效应为96.3kj/mol,所以当热量来不及导出时,会引起乙烯爆炸性分解。

c.乙烯可能在设备和管道中聚合,使温度上升到危险程度,导致乙烯分解和聚合产品堵塞设备。

d.如果违反压力条件和规定的混合气体流量比,在设备中乙烯和氧气可能形成易爆混合物。

e.乙烯分解时产生的分解细粒状炭黑有可能堵塞反应器和管道,从而使过程难以正常进行,以致不得不停产进行设备清理。

由上述危险因素可见,必须对工艺流程的所有工序进行温度、压力和物料流速的严格自动控制和调节。尤其应该准确地控制乙烯中氧的限制含量,因为当氧含量超过允许量时,反应速度将迅速加快,反应热来不及导出,以致使过程反应强度显著提高,最终使过程由乙烯爆炸性分解为甲烷和碳而结束。此外,当过量供氧时,还会形成爆炸性混合物。

高压聚乙烯的聚合反应在开始阶段或聚合反应进行阶段都会发生暴聚反应,所以设计时必须充分考虑到这一点。可以添加反应抑制剂或加装安全阀来防止。在紧急停车时,聚合物可能固化,停车再开车时,要检查管内是否堵塞。高压部分应有两重、三重防护措施;要求远距离操作;由压缩机出来的油严禁混入反应系统,因为油中含有空气,进入聚合系统能形成爆炸性混合物。

氯乙烯聚合是属于连锁聚合反应,连锁反应的过程可分为3个阶段,即链的开始、链的增长、链的终止。聚合反应中链的引发阶段是吸热过程,所以需加热。在链的增长阶段又放热,需要将釜内的热量及时导走,将反应温度控制在规定值。这两个过程要分别向夹套通入加热蒸汽和冷却水。温度控制多采用串级调节系统。为了及时导走热量必须有可靠的搅拌装置。由于氯乙烯聚合是采用分批间歇方式进行的,反应主要依靠调节聚合温度,因此聚合釜的温度自动控制十分重要。

丁二烯聚合过程中接触和使用酒精、丁二烯、金属钠等危险物质。酒精和丁二烯与空气混合都能形成爆炸性混合物,金属钠遇水、空气激烈燃烧,引起爆炸,因此不能暴露于空气中。

为了控制猛烈反应,应有适当的冷却系统,并需严格控制反应温度。冷却系统应保证密闭良好,特别在使用金属钠的聚合反应中,最好采用不与金属钠反应的十氢化萘或四氢化萘作为冷却剂。如用冷水做冷却剂,应在微负压下输送,不可用压力输送。这样可减少水进入聚合釜的机会。

丁二烯聚合釜上应装安全阀,通常的办法是同时安装爆破板。爆破板应装在连接管上,在其后再连接一个安全阀。这样可以防止安全阀堵塞,又能防止爆破板爆破时大量可燃气逸出而引起二次爆炸。爆破板不能用铸铁,必须用铜或铝制作,避免在爆破时铸铁产生火花引起二次爆炸事故。

聚合生产系统应配有氮气保护系统,所用氮气要经过精制,用铜屑除氧,用硅胶或三氯化铝干燥,纯度保持在99.5%以上。无论在开始操作或操作完毕打开设备前,都应该用氮气置换整个系统。当发生故障,温度升高或发现有局部过热现象时,须立即向设备充入氮气加以保护。正常情况下,操作完毕后,从系统内抽出气体是安全生产的一项重要措施,可消除或减少爆炸的可能性,当工艺过程被破坏,发生事故,不能降低温度或发现局部过热现象时,应将气体抽出,同时往设备中送入氮气。以上是在聚合过程中,为了防爆而必须采取的安全措施。

5 催化

催化反应分单相反应和多相反应两种,单相反应是在气态下或液态下进行的,危险性较小,因为在这种情况下,反应过程中的温度、压力及其他条件较易调节。在多相反应中,催化作用发生于相界面及催化剂的表面上,这时温度、压力较难控制。从防爆安全要求来看,催化过程中除要正确选择催化剂外,要注意散热需良好;催化剂加量适当,防止局部反应激烈;并注意严格控制温度。采用温度自动调节系统,就可以减少其危险性。

在催化反应过程中有的产生氯化氢,有腐蚀和中毒危险;有的产生硫化氢,则中毒危险性更大。另外,硫化氢在空气中的爆炸极限较宽(4.3%~45.5%),生产过程还有爆炸危险。在产生氢气的催化反应中,有更大的爆炸危险性,尤其高压下,氢的腐蚀作用使金属高压容器脆化,从而造成破坏性事故。

如原料气中某种能与催化剂发生反应的杂质含量增加,就可能生产爆炸危险物,也是非常危险的。例如,在乙烯催化氧化合成乙醛的反应中,由于在催化剂体系中含有大量的亚铜盐,若原料气含乙炔过高,则乙炔与亚铜会反应生成乙炔铜。乙炔铜呈红色,自燃点是260~270℃,干燥状态下极易爆炸,在空气作用下易氧化成暗黑色,并易起火。

6 裂化

裂化可分为热裂化、催化裂化、加氢裂化3种类型。

6.1 热裂化

热裂化在加热和加压下进行。根据所用压力的高低分高压热裂化和低压热裂化。高压热裂化在较低温度(约450~550℃)和较高压力(2~7mpa)下进行,低压热裂化在较高温度(约550~770℃)和较低压力(0.1~0.5mpa)下进行。处于高温下的裂解气,要直接喷水急冷,如果因停水和水压不足,或因操作失误,气体压力大于水压而冷却不下来,会烧坏设备从而引起火灾。为了防止此类事故发生,应配备两种电源和水源。操作时,要保证水压大于气压,发现停水或气压大于水压时要紧急放空。

裂解后的产品多数是以液态储存,有一定的压力,如有不严之处,储槽中的物料就会散发出来,遇明火发生爆炸。高压容器和管线要求不泄漏,并应安装安全装置和事故放空装置。压缩机房应安装固定的蒸汽灭火装置,其开关设在外边易接近的地方。机械设备、管线必须安装完备的静电接地和避雷装置。

分离主要是在气相下进行的,所分离的气体均有火灾爆炸危险,如果设备系统不严密或操作错误泄漏可燃气体,与空气混合形成爆炸性气体混合物,遇火源就会燃烧或爆炸。分离都是在压力下进行的,原料经压缩机压缩有较高的压力,若设备材质不良,误操作造成负压或超压;或者因压缩机冷却不好,设备因腐蚀、裂缝而泄漏物料,就会发生设备爆炸和油料着火。再者,分离又大都在低温下进行,操作温度有的低达-30~100℃。在这样的低温条件下,如果原料气或设备系统含水,就会发生冻结堵塞,以至引起爆炸起火。

分离的物质在装置系统内流动,尤其在压力下输送,易产生静电火花,引起燃烧,因此应该有完善的消除静电的措施。分离塔设备均应安装安全阀和放空管;低压系统和高压系统之间应有止逆阀;配备固定的氮气装置、蒸汽灭火装置。操作过程中要严格控制温度和压力。发生事故需要停车时,要停压缩机、关闭阀门,切断与其他系统的通路,并迅速开启系统放空阀,再用氮气或水蒸气、高压水等扑救。放空时应当先放液相后放气相。

6.2 催化裂化

催化裂化装置主要由3个系统组成,即反应再生系统、分馏系统以及吸收稳定系统。在生产过程中,这3个系统是紧密相连的整体。反应系统的变化很快地影响到分馏和吸收稳定系统,后两个系统的变化反过程又影响到反应部分。在反应器和再生器间,催化剂悬浮在气流中,整个床层温度要保持均匀,避免局部过热,造成事故。

两器压差保持稳定,是催化裂化反应中最重要的安全问题,两器压差一定不能超过规定的范围。目的就是要使两器之间的催化剂沿一定方向流动,避免倒流,造成油气与空气混合发生爆炸。当维持不住两器压差时,应迅速启动自动保护系统,关闭两器间的单动滑阀。在两器内存有催化剂的情况下,必须通以流化介质维持流动状态,防止造成死床。正常操作时,主风量和进料量不能低于流化所需的最低值,否则应通入一定量的事故蒸汽,以保护系统内正常流化态度,保证压差的稳定。当主风量由于某种原因停止时,应当自动切断反应器进料,同时启动主风与原料及增压风自动保护系统,向再生器与反应器、提升管内通入流化介质,而原料则经事故旁通线进入回炼罐或分馏塔,切断进料,并应保持系统的热量。催化裂化装置关键设备应当具有两路以上的供电电源,自动切换装置应经常检查,保持灵敏好用,当其中一路停电时,另一路能在几秒内自动合闸送电,保持装置的正常运行。

6.3 加氢裂化

加氢裂化是在有催化剂及氢气存在下,使蜡油通过裂化反应转化为质量较好的汽油、煤油和柴油等轻质油。它与催化裂化不同的是在进行裂化反应时,同时伴有烃类加氢反应、异构化反应等,所以称加氢裂化。

由于反应温度和压力均较高,又接触大量氢气,火灾爆炸危险性较大。加热炉平稳操作对整个装置安全运行十分重要,要防止设备局部过热,防止加热炉的炉管烧穿或者高温管线、反应器漏气。高压下钢与氢气接触易产生氢脆。因此应加强检查,定期更换管道和设备。

7 硝化

硝化反应是强烈放热的反应,故硝化需在降温条件下进行。因为温度控制是安全的基础,所以应当安装温度自动调节装置。

常用的硝化剂是混酸(浓硝酸与浓硫酸的混合物)制备混酸时放出大量热,温度可达到90℃或更高。在这个温度下,硝酸部分分解为二氧化氮和水,假若有部分硝基物生成,高温下可能引起爆炸。

硝化器夹套中冷却水压力微呈负压,在水引入管上,必须安装压力计,在进水管及排水管上都需要安装温度计。应严防冷却水因夹套焊缝腐蚀而漏入硝化物中,因硝化物遇到水后温度急剧上升,反应进行很快,可分解产生气体物质而发生爆炸。

为严格控制硝化反应温度,应控制好加料速度,硝化剂加料应采用双重阀门控制。搅拌机应有自动启动的备用电源,以防止机械搅拌在突然断电时停止而引起事故,搅拌轴采用硫酸作润滑剂,温度套管用硫酸作导热剂。不可使用普通机械油或甘油,防止它们被硝化而形成爆炸性物质。由填料出落入硝化器中的油能引起爆炸事故,因此,在硝化器盖上不得放置用油浸过的填料。在搅拌器的轴上,应备有小槽,借以防止齿轮上的油落入硝化器中。

硝化过程中最危险的是有机物质的氧化,其特点是放出大量氧化氮气体的褐色蒸气并使混合物的温度迅速升高,引起硝化混合物从设备中喷出而引起爆炸事故。仔细地配制反应混合物并除去其中易氧化的组分、调节温度及连续混合是防止硝化过程中发生氧化作用的主要措施。

由于硝基化合物具有爆炸性,同时必须特别注意处理此类物质过程中的危险性。例如,二硝基苯酚甚至在高温下也无危险,但当形成二硝基苯酚盐时,则变为危险物质。三硝基苯酚盐(特别是铅盐)的爆炸力是很大的。在蒸馏硝基化合物时,必须特别小心。

硝化设备应确保严密不漏,防止硝化物料溅到蒸气管道等高温表面上而引起爆炸或燃烧。如管道堵塞时,可用蒸汽加温疏通,切不可用金属棒敲打或明火加热。

车间内禁止带入火种,电气设备要防爆。当设备需动火检修时,应拆卸设备和管道,并移至车间外安全地点,用水蒸汽反复冲刷残留物质,经分析合格后,方可施焊。需要报废的管道,应专门处理后堆放起来,不可随便挪用,避免意外事故发生。

8 氯化

氯是强氧化剂,能与可燃气体形成易爆混合物。氯代烃与空气和氧气也能形成易爆混合物。氯与氢的混合物的爆炸浓度极限范围更宽。氯和可燃烃类、醇、羧酸和氯代烃的二元混合物在绝大多数情况下容易爆炸。众所周知,许多烃(乙烯、丙烯、正丁烯、正戊烯)能在100℃温度下,甚至在室温下以明显的速度与氯气反应,生成含氯产物。当烯烃与氯气形成混合物并将它加热时,可能产生由绝热反应引起的自燃。所以在一定条件下,工艺设备中会发生自行加速过程,并进而转为爆炸。乙炔加入氯气的反应过程非常剧烈,添加少量氧对这一反应可起催化作用。在氧存在下,乙炔与氯气在室温,甚至-78℃下即能相互作用,并引起爆炸。乙炔和氯气的相互作用会引发乙炔爆炸性分解。含氯的可燃混合物具有低温自燃特性,当形成爆炸性混合物时,这一特性会增加引起燃烧的危险性。

氯化过程的特点是被氯化的大多数烃和获得的一氯或二氯代衍生物能与空气或氧气形成爆炸性混合物,所以氯化过程的设备构造、控制和自动化系统均应不让可燃产物有可能与氧气或空气形成爆炸性混合物。反应时放热量大和与乙炔等不饱和烃作用时氯有活性是氯化过程的主要危险。

在化工生产中,最常用的氯化剂是氯气,它通常液化储存和运输。

储罐中的液氯在进入氯化器使用之前必须先进入蒸发器使其气化。通常不能把储存氯气的气瓶或槽车当储罐使用,因为这样有可能使被氯化的有机物质倒流进气瓶或槽车而引起爆炸。对于一般氯化器应装设氯气缓冲罐,防止氯气断流或压力减小时形成倒流。

氯化反应的危险性主要决定于被氯化物质的性质及反应过程的控制条件。由于氯气本身的毒性较大,储存压力较高,一旦泄漏是很危险的。反应过程所用的原料大多是有机物,易燃易爆,所以生产过程有燃烧爆炸危险,应严格控制各种点火能源,电气设备应符合防爆的要求。氯化反应是一个放热过程,尤其在较高温度下进行氯化,反应更为激烈。例如环氧氯丙烷生产中,丙烯预热至300℃左右进行氯化,反应温度可升至500℃,在这样高的温度下,如果物料泄漏就会造成燃烧或引起爆炸。因此,一般氯化反应设备必须备有良好的冷却系统,并严格控制氯气的流量。

第9篇 石油化工集团公司液化烃球罐区安全技术管理规定

1 液化烃球罐区安全技术管理的基本要求

1.1 液化烃球罐区及球罐的安全设计、运行管理除执行本规定外,还应符合国家和行业现行有关标准规范及中国石化集团公司相关技术和安全监督管理的规定。

1.2 液化烃球罐区建设项目必须符合国家和建设项目所在地区安全、职业卫生、消防、抗震减灾的有关法规和报批程序。建设项目中安全、职业卫生、消防、抗震减灾技术措施和设备、设施,应与主体工程同时设计、同时施工、同时投产使用。

2 术语

2.1 液化烃

在15℃时,饱和蒸气压大于0.1mpa(g)的烃类液体及其他类似的液体,不包括液化天然气。

2.2 紧急切断阀

安装在球罐进出口管道上、发生事故或异常情况时能够快速紧密关闭(tso)的阀门,紧急切断阀的允许泄漏量等级应达到ansi b16.104(fci 70-2)class v级或以上级。该阀门应具有热动、手动及遥控手动(带手柄的遥控)关闭的功能。

2.3 关闭时间

紧急切断阀靠液压、气压或电信号关闭时,由控制系统、安全仪表系统或操作者发出关闭信号开始至液流完全关断为止所经历的时间,以秒(s)表示。

2.4 全压力式储罐

液化烃在常温和较高压力下存储的液态储罐。

2.5 半冷冻式储罐

液化烃在较低温度和较低压力下存储的液态储罐。

2.6 热动

指受高热(如火烤)情况下启动或动作。

3 液化烃球罐区的选址及区域布置、设计要求、运行管理和施工管理

3.1 选址及区域布置

3.1.1 选址

液化烃球罐区的选址要严格执行《石油化工企业设计防火规范》gb50160-2008,油田企业、城镇燃气、油库等炼化板块以外的企业液化烃球罐区应执行相应行业的国家标准。在山区或丘陵地区的液化烃球罐区应避免布置在窝风地带。

3.1.2 罐组

3.1.2.1 液化烃球罐组应设防火堤。防火堤不应高于0.6m,且不应低于可燃气体(有毒气体)检测报警仪的安装高度。

3.1.2.2 液化烃球罐不得与其他可燃、助燃气体储罐同组布置,但全压力式液化烃球罐可与可燃液体的压力储罐同组布置。

3.1.2.3 球罐材质不能适应该罐组介质最低温度时不应布置在同一罐组内。

3.1.2.4 同一罐组内全压力式或半冷冻式储罐的个数不应多于12个,且不超过2排。

3.1.2.5 两个罐组相邻球罐之间的防火间距不应小于20m。

3.1.3 道路

3.1.3.1 液化烃罐组周边应设环形消防通道,路面宽度不小于6m,转弯半径不小于12m,净空高度不应小于5m。

3.1.3.2 罐区内的产品运输道路距离球罐外壁水平距离不应小于15m。

3.2 设计要求

3.2.1 一般要求

球罐区的设计应符合《石油化工企业设计防火规范》gb 50160-2008、《固定式压力容器安全技术监察规程》tsg r004、《液化烃球形储罐安全设计规范》sh 3136、《钢制球形储罐》gb 12337、《石油化工储运系统罐区设计规范》sh/t 3007、《压力管道安全技术监察规程》tsg d0001、《石化管道器材选用设计通则》sh 3059等各专业现行规范的有关规定。

3.2.2 设备材质

3.2.2.1 球罐选材除符合相应标准和规范的要求外,还应符合以下条件:

a)采用低温钢时应有明确的技术要求,如p、s含量及冲击功要求等。

b)采用低合金高强钢应标明腐蚀介质的适用浓度,并要求在使用过程中工艺上严格执行腐蚀介质的控制浓度,不得超浓度使用。

3.2.2.2 对于气候潮湿,且最低设计温度t<0℃球罐的阀门、螺栓、导淋管、管帽应选用可适用于液化烃介质且耐大气腐蚀的材质。

3.2.2.3 球罐保温材料应使用具有阻火作用的材料,保冷必须采用不燃材料。

3.2.2.4 操作平台和梯子应根据当地区气候条件选用耐腐蚀材料。

3.2.3 工艺要求

3.2.3.1 球罐应至少设2个安全阀和1个紧急放空线(安全阀副线),每个都能满足事故状态下安全泄放量的要求;安全阀前后均应设手动全通径切断阀,切断阀口径不应小于安全阀出、入口口径,正常保持全开状态,并加设铅封或锁定;气体紧急放空管管径不应小于安全阀的入口直径。

3.2.3.2 对易爆介质或者毒性程度为极度、高度或者中度危害介质的压力容器,应当在安全阀或者爆破片的排出口装设导管,将排放介质引至安全地点,并且进行妥善处理,不得直接排入大气。

3.2.3.3 球罐应根据存储介质的特性确定是否需要设置切水设施。球罐切水应遵循安全可靠、操作简便的原则。切水接管应位于球罐最低部位。如采用二次脱水系统,脱水罐应为压力容器,设计压力不应低于球罐的压力等级,设计温度应按照所存介质常压沸点考虑;与球罐之间的管道系统应为压力管道。寒冷(最冷月平均温度0-10℃)、及严寒(最冷月平均温度<-10℃)地区的脱水系统应采取保温伴热等防冻措施。

3.2.3.4 液化烃球罐应视存储物料的性质设置合理的注水设施。注水设施的设计以安全、快速有效、可操作性强为原则。

3.2.3.5 两端阀门关闭且因外界影响可能造成介质压力升高的液化烃管道应有泄压的安全措施或设施。

3.2.3.6 携带可燃液体的低温可燃气体排放系统的设计应符合《石油化工企业燃料气系统和可燃性气体排放系统设计规范》sh3009的有关规定;低温管道器材的选用应符合《石化管道器材选用设计通则》sh3059的有关规定。低温气体如未设专用排放系统,则在排入全厂性火炬总管前应设置气化器。

3.2.3.7 液化烃蒸发器的气相部分应设压力表和安全阀;液相部分应有液位指示仪表。

3.2.3.8 有可能被物料堵塞或腐蚀的安全阀,在安全阀前应设爆破片或在其进出口管道上采取吹扫措施;在寒冷及严寒地区,对于含水物料的安全阀进出管道应采取防冻措施。

3.2.3.9 储存不稳定的烯烃、二烯烃等物质时,应采取防止生成过氧化物、自聚物的措施。丁二烯球罐应采取以下措施:

a)设置氮封系统;

b)储存周期在两周以内时,应设置水喷淋冷却系统,使球罐外表面温度保持在30℃以下;储存周期在两周以上时,应设置冷冻循环系统和阻聚剂添加系统,使丁二烯温度保持在10℃以下;

c)丁二烯球形球罐安全阀出口管道应设氮气吹扫。

3.2.3.10 液化烃设备应有事故紧急排放设施,可将设备内的液化烃排放至安全地点,剩余的液化烃应排入火炬系统。

3.2.3.11 在非正常条件下,当设备顶部最高操作压力大于等于0.1mpa(g)的压力容器应设安全阀;当设备顶部最高操作压力为0.03~0.1mpa(g)的设备应根据工艺要求设置安全阀。

3.2.3.12 液化烃泵房的地面不宜设地坑或地沟,泵房内应有防止可燃气体积聚的措施。

3.2.3.13 相邻液化烃球罐宜设联合平台,联合操作平台应设不少于两个通往地面的梯子(至少两个是斜梯,斜梯与水平面的夹角不宜大于42°),作为安全疏散通道。

3.2.4 仪表自控

3.2.4.1 液化烃球罐区应设置仪表控制系统完成生产过程的数据采集、监控、报警及过程控制任务。控制系统可采用可编程序控制器(plc)、分散型控制系统(dcs)、监控和数据采集系统(scada)和现场总线控制系统(fcs)等。

当罐区操作中有安全联锁要求时,应设置安全联锁回路及安全仪表系统。安全联锁回路中的测量元件(包括传感器、变送器等)、逻辑控制器和执行元件(包括电磁阀、控制阀、切断阀等)均应满足安全完整性等级(sil)要求。

3.2.4.2 液化烃球罐罐顶应设压力就地和远传仪表测量气相压力,压力表与压力变送器不得共用同一开口。宜单独设置压力高报警设施,压力高报警检测元件可采用压力开关或独立的压力变送器等可靠性强、有广泛应用的元件。

3.2.4.3 液化烃球罐应设就地和远传液位计。就地液位计可采用磁翻板液位计、钢带液位计、雷达或伺服液位计的罐旁指示仪,不应使用玻璃管(板)液位计。当就地液位计采用雷达或伺服罐旁指示仪时,球罐还应设一种不同类别的液位远传仪表。寒冷及严寒地区使用的磁翻板液位计应采取伴热或保温措施。

3.2.4.4 液化烃球罐应设高低液位报警和高高液位联锁切断进料措施。高高液位联锁的检测元件应独立设置,可采用超声波、音叉、浮球或电容式液位开关,并宜与雷达、伺服等远传液位计的高高液位信号组成“三取二”联锁切断进料,高高液位联锁的检测元件应能在线校验。高液位报警的设定高度应为球罐的设计储存液位。高高液位报警的设定高度,不应大于液相体积达到球罐计算容积90%时的高度。

3.2.4.5 紧急切断阀

a)液化烃球罐液相进出口处应设紧急切断阀,紧急切断阀的执行机构可选用气动型、液压型或电动型(优先选用气动)。当切断阀的执行机构为气动执行机构时应选用单作用气缸执行机构(故障安全性型);如已采用气动双作用气缸执行机构时应配事故空气罐。当执行机构为电动型时,其电源应通过电气ups供电,其电源电缆、信号电缆和电动执行机构应做防火保护。

b)紧急切断阀应与工艺控制阀相区别。其密封结构应采用耐火结构并符合ansi/api std607标准;允许泄漏量应符合ansi b16.104(fci 70-2)class v级或以上级。

c)液化烃球罐区防火堤外及控制室操作站(硬开关或软开关)应设置紧急切断阀联锁按钮,当球罐液位高高报警或发生火灾时,操作员能够遥控或就地手动关闭紧急切断阀,在紧急切断阀关闭后,自动联锁停止进料泵。紧急切断阀的关闭时间按下表:

紧急切断阀的完全关闭时间

公称尺寸dn(mm)完全关闭时间(s)

≤50≤5

65~350≤10

d)紧急切断阀应能保证在易熔元件自动切断装置温度达到75±5℃时自动关闭。

e)选用的紧急切断阀应为故障安全型。

3.2.4.6 液化烃球罐区应设现场声/光报警设施。固定式可燃气体、有毒气体检测器及其他报警信号应接入现场声/光报警设施。探测器的设置及报警设定值的设定严格执行《石油化工可燃气体和有毒气体检测报警设计规范》gb 50493。

3.2.4.7 液化烃球罐区现场远传仪表及仪表控制系统应采用ups不间断电源供电,ups的后备电池供电时间不少于30分钟。

3.2.4.8 电缆宜按防火堤外桥架或埋地敷设,堤内埋地方式敷设,至设备处穿钢管保护。埋地敷设的电缆应考虑防止地下水的侵蚀。如果堤内采用仪表汇线槽盒架空敷设时,应选用阻燃型电缆。

3.2.4.9 液化烃球罐区应根据所在地区雷击概率及相关标准设置相应的电涌保护器。

3.2.4.10 液化烃球罐区仪表及控制系统的保护接地、工作接地、防静电接地、防雷接地应共用接地系统,接地电阻不应大于4ω。

3.2.5 安全监控系统

3.2.5.1 液化烃球罐区应设工业电视监控系统。室外安装的摄像机应置于接闪器有效保护范围之内;摄像机的视频线、信号线宜采用光缆传输,电源采用ups供电,各类电缆两端加装浪涌保护器;摄像机应有良好的接地,接至接地网。

3.2.5.2 远离生产厂区或独立的液化烃罐区应设周界报警系统,周界报警系统应能与工业电视监控系统联动。

3.2.6 电气及防雷防静电

3.2.6.1 液化烃球罐应设防雷接地。接地引下线不应少于2根,并沿罐周长均匀分布,冲击接地电阻不应大于10ω。

3.2.6.2 液化烃球罐支柱应设接地板,球罐的接地板直接焊接在支柱上,接地线应采用螺栓与接地板可靠连接(如果1台球罐设有n根接地引下线,则至少n-1根需要螺栓连接,另外1根可以直接焊接于接地板上,能消除基础沉降产生的应力)。

3.2.6.3 接地引下线以及接地极宜采用铜材料,如果使用热镀锌扁钢,则腐蚀性土壤条件下宜采用75mm×5mm热镀锌扁钢,其余地区不应小于40mm×4mm。采用铜线或圆铜材料的接地引下线的有效截面积应≥50mm2。

3.2.6.4 与罐体相接的电气、仪表配线(铠装电缆除外)应采用金属管屏蔽保护,电缆外皮或配线钢管与罐体作电气连接。在相应的被保护设备处,应安装与设备耐压水平相适应的浪涌保护器。

3.2.6.5 液化烃储罐及管道应采取静电接地措施。在管道进出设施、泵房、防火堤处设静电接地。

3.2.6.6 在防火堤外人行踏步处、液化烃泵房门口以及球罐扶梯入口处应设消除人体静电装置。

3.2.6.7 4根及以下螺栓连接的工艺管道法兰及阀门应做电气连接。

3.2.6.8 防雷接地、防静电接地、电气设备的工作接地、保护接地、信息系统接地等应共用接地系统,实测的接地电阻不大于4ω。

3.2.6.9 接地网应设检测井

3.2.7 消防

3.2.7.1 消防水泵房用电设备的电源,应满足现行国家标准《供配电系统设计规范》gb50052所规定的一级负荷供电要求。消防水泵房及其配电室应设事故照明,事故照明可采用蓄电池作备用电源,其连续供电时间不应少于20min。重要消防用电设备的供电,应在最末一级配电装置或配电箱处实现自动切换,其配电线路宜采用耐火电缆。油田、油库等另有专门规范规定的执行相关规定。

3.2.7.2 消防水源

a)液化烃球罐区的消防水源应可靠,供水时间不低于8h。当球罐区附近有合适水源时,可设置为消防备用水源,消防备用水源上设可靠的取水设施。

b)液化烃罐区应设稳高压消防给水系统,其压力宜为0.7~1.2mpa(g)。独立或远离厂区单独的液化烃罐区应设独立的稳高压消防给水系统。

c)消防水泵、稳压泵应分别设置备用泵,其能力不得小于最大1台泵的能力。消防冷却水泵供水能力除满足额定工况要求外,在满足150%额定流量时,水泵扬程不低于65%额定扬程。稳压泵的流量不宜小于启动1只消火栓时的流量。若考虑备用动力源,应考虑100%流量备用。

d)消防水泵应在接到报警后2min以内投入运行。稳高压消防给水系统的消防水泵应能依靠管网压降信号自动启动。

3.2.7.3 球罐区消防冷却水系统

a)液化烃罐区的消防冷却总用水量应按球罐固定式消防冷却用水量与移动消防冷却用水量之和计算。

b)消防冷却水管道应在防火堤外安全位置设置控制阀,控制阀前的配水管道宜采用内外壁热镀锌钢管或符合现行国家、行业标准规定的涂覆其他防腐材料的钢管,以及铜管、不锈钢管;控制阀后的管道应采用前述材质的管道。当控制阀前管道采用不防腐的钢管或者不能避免出现锈渣、焊渣及其他可能堵塞喷雾(喷淋)喷头的杂质时,阀前应设置带旁通阀的过滤器,管道可焊接连接;阀后管道应采用避免出现焊渣、锈渣的连接方式。阀后的镀锌钢管可采用沟槽式连接件(卡箍)、丝扣或法兰连接。严禁在预制及施工过程中损坏镀锌层。

c)容积大于等于1000m3的液化烃球罐的消防水喷淋应采用远程手动启动程序控制系统,同时具备现场手动操作功能。

3.2.7.4 液化烃罐区应设置消防应急广播。当使用扩音对讲系统作为消防应急广播时,应能切换至消防应急广播状态。

3.2.7.5 液化烃罐组宜按防火堤内面积每400m2配置1个手提式干粉灭火器,但每个球罐配置的数量不宜超过3个。

3.2.7.6 有液化烃球罐(区)的石油化工企业,如单罐容积大于等于1000m3或液化烃球罐区总容积大于等于2000m3时,应配置干粉消防车。

3.2.7.7 出罐区防火堤污水管道(沟)应设水封井及切断阀。

3.3 运行管理

3.3.1 检测制度

3.3.1.1 液化烃球罐的定期检测检验要严格执行《压力容器定期检验规则》tsg r7001和《固定式压力容器安全技术监察规程》tsg r0004的相关规定。球罐管理单位应在全面检测时提出温度计套管和球罐支柱的检测要求。

3.3.1.2 安全阀的检测检验要严格执行《安全阀安全技术监察规程》tsg zf001。

3.3.1.3 压力管道的检测检验应严格执行《压力管道安全技术监察规程-工业管道》tsg d0001。

3.3.1.4 可燃(有毒)气体检测报警仪应定期检测,周期不大于1年,并应满足当地主管部门的检测周期要求。

3.3.1.5 防雷接地应每半年检测1次(可结合法定检测进行,1次法定检测,1次管理检测),并在每年的雷雨季节前进行防雷接地的法定检测,检测时应先断开断接卡后进行测试。

3.3.1.6 对已建在采空区、煤田、软地基等不良地质条件上的液化烃球罐,应每年对罐区地基进行独立沉降观测,或者经过充分论证,制定适合当地条件的监测周期。新建球罐应避免建于上述不良地质条件地区。

3.3.2 检查、维护制度

3.3.2.1 设备检查

a)操作平台以及扶梯等通道应保持完好、畅通、清洁,不得遗留其他杂物。

b)每年应组织人员进行阀门、法兰、导淋、放空管等细小设施的检查,检查腐蚀情况以及盲板或法兰盖的配置情况等。

3.3.2.2 电视监控系统检查

a)电视监控系统必须24小时有人负责监视。

b)确保电视监控系统运行良好,如有故障及时维修。

c)保持摄像镜头清洁,图像清晰。

d)电视监控记录应至少保存1周。

3.3.2.3 仪表电气系统检查

a)每年在雷雨季节来临前组织专业人员对球罐区的等电位和接地系统进行检测,经评估必要时,应挖开地面抽、检查地下隐蔽部分锈蚀情况,如发现问题及时处理。

b)定期对仪表系统进行调试及维护,确保仪表灵敏好用。

3.3.2.4 消防系统检查

a)每年清理1次消防喷淋管网及喷头内的杂物,确保喷头畅通。

b)每月检查1次消防箱内消防器材是否齐全,是否在有效期内,消防水带是否老化、破损,不合格的水带及其他消防器材应及时更换。

c)每月对球罐的喷淋(雾)系统出水情况测试1次,发现问题及时处理。

3.3.2.5 注水堵漏系统检查应有专人负责,并定期检查,确保系统完好。

3.3.3 安全运行制度

3.3.3.1 液化烃罐区应定为一级要害部位,严格执行集团公司《关键装置要害(重点)部位安全管理规定》。应建立健全各项管理制度,并进行严格管理。液化烃球罐区的管理人员应熟悉球罐区周边情况。在应急预案中应分析球罐区周边设施的危险有害性及其重要程度(是否需要特殊保护等),判断其是否会威胁球罐区的安全运行,同时评估球罐区事故状态下的影响范围,分析在事故状态下相互影响的关系,并以此为依据制定合理可行的应急方案。一旦周边关系发生变化,应及时修订应急预案,并定期组织演练。

3.3.3.2 液化烃罐区大门明显处或者未单独设出入口的罐区明显处应设置“人员进入安全须知”告示;罐区内应设置醒目的禁止、警告、指令、提示标志和危险危害告知牌。对于泄漏有没有堵漏措施和堵漏设备,是否能够实施堵漏,能否采取倒罐措施均需给予说明。

3.3.3.3 独立或远离厂区单独的液化烃球罐区应实施封闭化管理,厂区内的化烃球罐区可依托厂区进行封闭化管理,建立严格的门禁管理制度,配备完备的门禁设施,对人员和车辆实行严格管控,对各危险源实行实时电视监控。

3.3.3.4 编制合理的液化烃罐区《工艺技术规程》和《作业指导书》,并严格执行。应控制工艺参数,不超压超温超液位指标;应控制好物料脱水,坚持三不脱水,即夜间不脱水,大雾天不脱水,雷、暴雨天不脱水,脱水时不得离人(如夜间、雾天必须脱水时,应由当班班长批准,并加强监护);收、付、倒料作业的流程设定应实行双人确认;物料采样作业应采用密闭方式,并由操作人员进行监护;实行物料管线卸压的规范化操作;认真落实员工的现场巡回检查责任和控制系统监控责任。

3.3.3.5 在寒冷及严寒地区应编制冬季防冻防凝方案,落实防冻防凝措施,并责任到人。对物料系统可能含水部位必须加伴热保温并及时排水。

3.3.3.6 严格执行国家、行业规范和企业设备管理规定。应按规范要求定期组织压力容器、管道及其安全附件的检验,不超期使用;加强对各类阀门的日常检查和维修工作,保证阀门严密、完好;做好在用设备的运行管理和备用设备的定期切换运行,运行动设备应实行点检,并做好设备运行记录;及时对故障设备设施进行检修,不带病运行。确须超期使用的设备设施应采取相应措施,并按规定办理相应手续。

3.3.3.7 对液化烃罐区配备的各种消防、气防设备设施,各种检测、报警仪表或系统等应按要求进行定期检验和维护,使其处于完好状态,并做好记录。

3.3.3.8 液化烃球罐或系统停用检修前应编制停用工艺处理方案,按方案组织工艺处理,并用盲板隔绝,经分析合格并确认后方可交出。新球罐及系统首次投用或检修后投用,应编制投用方案,必须经吹扫、置换、气密、保压、分析合格,并按确认表的要求进行逐项确认签字后方可投用。液化烃球罐首次投用前应进行含氧量分析,对于烷烃类介质氧含量应小于6%,对于爆炸范围较宽的介质氧含量应小于3%;当贮罐介质对氧含量有特殊要求时,氧含量不应超过其要求的安全值。

3.3.3.9 液化烃罐区的直接作业环节应严格执行相应管理制度,并办理相应手续。要严格控制用火作业,采取严格用火措施,各种用火(含可能产生火花)作业不得与工艺处理、采样等可能产生物料泄漏的作业交叉进行;机动车进入液态罐区必须安装阻火设施;严禁使用非防爆电器;严格控制电子器械的使用;液化烃罐区的操作应采用防爆工具;维修时应依据现场作业条件,确定是否采用防爆工具;液化烃罐区应采取其他控制火源的措施。

3.3.3.10 定期组织液化烃罐区管理和操作人员技能培训和反事故演习,提高其操作技能和应变突发事件的能力。液化烃罐区操作人员必须取得地方政府颁发的压力容器和压力管道操作资格证和企业颁发的岗位操作上岗证,做到持证上岗,并定期复审。

3.3.3.11 按照《应急程序》中物资清单配备备用应急物资,做到定人管理,定点摆放,取用方便,并做好物资清单记录,进行实物标识,并定期进行检查、维护和更新。

3.4 施工管理

3.4.1 各专业施工单位应具有相关专业的施工资质。

3.4.2 企业要向施工单位进行交底,明确施工范围,并作出标记,告知存在的危险源、可能引发的后果及控制措施。

3.4.3 施工及检维修作业前,施工单位应编制施工技术方案和应急预案,经业主审核后,向所有作业人员交底。

3.4.4 进入液化烃球罐区所有受限空间作业前,必须进行气体检测,检测合格后办理进入受限空间作业许可证。

3.4.5 在液化烃球罐区动土、动火、临时用电作业及车辆进入该区域作业必须办理相关作业许可证,否则不得作业。

3.4.6 施工单位应建立健全应急组织机构、落实职责、编制应急预案、配齐应急物资。

第10篇 中国石油化工集团公司液化烃球罐区安全技术管理暂行规定

评论:更新日期:2016年05月21日

1  液化烃球罐区安全技术管理的基本要求

1.1  液化烃球罐区及球罐的安全设计、运行管理除执行本规定外,还应符合国家和行业现行有关标准规范及中国石化集团公司相关技术和安全监督管理的规定。

1.2  液化烃球罐区建设项目必须符合国家和建设项目所在地区安全、职业卫生、消防、抗震减灾的有关法规和报批程序。建设项目中安全、职业卫生、消防、抗震减灾技术措施和设备、设施,应与主体工程同时设计、同时施工、同时投产使用。

2  术语

2.1  液化烃

在15℃时,饱和蒸气压大于0.1mpa(g)的烃类液体及其他类似的液体,不包括液化天然气。

2.2  紧急切断阀

安装在球罐进出口管道上、发生事故或异常情况时能够快速紧密关闭(tso)的阀门,紧急切断阀的允许泄漏量等级应达到ansi b16.104(fci 70-2)class v级或以上级。该阀门应具有热动、手动及遥控手动(带手柄的遥控)关闭的功能。

2.3  关闭时间

紧急切断阀靠液压、气压或电信号关闭时,由控制系统、安全仪表系统或操作者发出关闭信号开始至液流完全关断为止所经历的时间,以秒(s)表示。

2.4  全压力式储罐

液化烃在常温和较高压力下存储的液态储罐。

2.5  半冷冻式储罐

液化烃在较低温度和较低压力下存储的液态储罐。

2.6  热动

指受高热(如火烤)情况下启动或动作。

3  液化烃球罐区的选址及区域布置、设计要求、运行管理和施工管理

3.1  选址及区域布置

3.1.1  选址

液化烃球罐区的选址要严格执行《石油化工企业设计防火规范》gb50160-2008,油田企业、城镇燃气、油库等炼化板块以外的企业液化烃球罐区应执行相应行业的国家标准。在山区或丘陵地区的液化烃球罐区应避免布置在窝风地带。

3.1.2  罐组

3.1.2.1  液化烃球罐组应设防火堤。防火堤不应高于0.6m,且不应低于可燃气体(有毒气体)检测报警仪的安装高度。

3.1.2.2  液化烃球罐不得与其他可燃、助燃气体储罐同组布置,但全压力式液化烃球罐可与可燃液体的压力储罐同组布置。

3.1.2.3  球罐材质不能适应该罐组介质最低温度时不应布置在同一罐组内。

3.1.2.4  同一罐组内全压力式或半冷冻式储罐的个数不应多于12个,且不超过2排。

3.1.2.5  两个罐组相邻球罐之间的防火间距不应小于20m。

3.1.3  道路

3.1.3.1  液化烃罐组周边应设环形消防通道,路面宽度不小于6m,转弯半径不小于12m,净空高度不应小于5m。

3.1.3.2  罐区内的产品运输道路距离球罐外壁水平距离不应小于15m。

3.2  设计要求

3.2.1  一般要求

球罐区的设计应符合《石油化工企业设计防火规范》gb 50160-2008、《固定式压力容器安全技术监察规程》tsg r004、《液化烃球形储罐安全设计规范》sh 3136、《钢制球形储罐》gb 12337、《石油化工储运系统罐区设计规范》sh/t 3007、《压力管道安全技术监察规程》tsg d0001、《石化管道器材选用设计通则》sh 3059等各专业现行规范的有关规定。

3.2.2  设备材质

3.2.2.1  球罐选材除符合相应标准和规范的要求外,还应符合以下条件:

a)采用低温钢时应有明确的技术要求,如p、s含量及冲击功要求等。

b)采用低合金高强钢应标明腐蚀介质的适用浓度,并要求在使用过程中工艺上严格执行腐蚀介质的控制浓度,不得超浓度使用。

3.2.2.2  对于气候潮湿,且最低设计温度t<0℃球罐的阀门、螺栓、导淋管、管帽应选用可适用于液化烃介质且耐大气腐蚀的材质。

3.2.2.3  球罐保温材料应使用具有阻火作用的材料,保冷必须采用不燃材料。

3.2.2.4  操作平台和梯子应根据当地区气候条件选用耐腐蚀材料。

3.2.3  工艺要求

3.2.3.1  球罐应至少设2个安全阀和1个紧急放空线(安全阀副线),每个都能满足事故状态下安全泄放量的要求;安全阀前后均应设手动全通径切断阀,切断阀口径不应小于安全阀出、入口口径,正常保持全开状态,并加设铅封或锁定;气体紧急放空管管径不应小于安全阀的入口直径。

3.2.3.2  对易爆介质或者毒性程度为极度、高度或者中度危害介质的压力容器,应当在安全阀或者爆破片的排出口装设导管,将排放介质引至安全地点,并且进行妥善处理,不得直接排入大气。

3.2.3.3  球罐应根据存储介质的特性确定是否需要设置切水设施。球罐切水应遵循安全可靠、操作简便的原则。切水接管应位于球罐最低部位。如采用二次脱水系统,脱水罐应为压力容器,设计压力不应低于球罐的压力等级,设计温度应按照所存介质常压沸点考虑;与球罐之间的管道系统应为压力管道。寒冷(最冷月平均温度0-10℃)、及严寒(最冷月平均温度<-10℃)地区的脱水系统应采取保温伴热等防冻措施。

3.2.3.4  液化烃球罐应视存储物料的性质设置合理的注水设施。注水设施的设计以安全、快速有效、可操作性强为原则。

3.2.3.5  两端阀门关闭且因外界影响可能造成介质压力升高的液化烃管道应有泄压的安全措施或设施。

3.2.3.6  携带可燃液体的低温可燃气体排放系统的设计应符合《石油化工企业燃料气系统和可燃性气体排放系统设计规范》sh3009的有关规定;低温管道器材的选用应符合《石化管道器材选用设计通则》sh3059的有关规定。低温气体如未设专用排放系统,则在排入全厂性火炬总管前应设置气化器。

3.2.3.7  液化烃蒸发器的气相部分应设压力表和安全阀;液相部分应有液位指示仪表。

3.2.3.8  有可能被物料堵塞或腐蚀的安全阀,在安全阀前应设爆破片或在其进出口管道上采取吹扫措施;在寒冷及严寒地区,对于含水物料的安全阀进出管道应采取防冻措施。

3.2.3.9  储存不稳定的烯烃、二烯烃等物质时,应采取防止生成过氧化物、自聚物的措施。丁二烯球罐应采取以下措施:

a)设置氮封系统;

b)储存周期在两周以内时,应设置水喷淋冷却系统,使球罐外表面温度保持在30℃以下;储存周期在两周以上时,应设置冷冻循环系统和阻聚剂添加系统,使丁二烯温度保持在10℃以下;

c)丁二烯球形球罐安全阀出口管道应设氮气吹扫。

3.2.3.10  液化烃设备应有事故紧急排放设施,可将设备内的液化烃排放至安全地点,剩余的液化烃应排入火炬系统。

3.2.3.11  在非正常条件下,当设备顶部最高操作压力大于等于0.1mpa(g)的压力容器应设安全阀;当设备顶部最高操作压力为0.03~0.1mpa(g)的设备应根据工艺要求设置安全阀。

3.2.3.12  液化烃泵房的地面不宜设地坑或地沟,泵房内应有防止可燃气体积聚的措施。

3.2.3.13  相邻液化烃球罐宜设联合平台,联合操作平台应设不少于两个通往地面的梯子(至少两个是斜梯,斜梯与水平面的夹角不宜大于42°),作为安全疏散通道。

3.2.4  仪表自控

3.2.4.1  液化烃球罐区应设置仪表控制系统完成生产过程的数据采集、监控、报警及过程控制任务。控制系统可采用可编程序控制器(plc)、分散型控制系统(dcs)、监控和数据采集系统(scada)和现场总线控制系统(fcs)等。

当罐区操作中有安全联锁要求时,应设置安全联锁回路及安全仪表系统。安全联锁回路中的测量元件(包括传感器、变送器等)、逻辑控制器和执行元件(包括电磁阀、控制阀、切断阀等)均应满足安全完整性等级(sil)要求。

3.2.4.2  液化烃球罐罐顶应设压力就地和远传仪表测量气相压力,压力表与压力变送器不得共用同一开口。宜单独设置压力高报警设施,压力高报警检测元件可采用压力开关或独立的压力变送器等可靠性强、有广泛应用的元件。

3.2.4.3  液化烃球罐应设就地和远传液位计。就地液位计可采用磁翻板液位计、钢带液位计、雷达或伺服液位计的罐旁指示仪,不应使用玻璃管(板)液位计。当就地液位计采用雷达或伺服罐旁指示仪时,球罐还应设一种不同类别的液位远传仪表。寒冷及严寒地区使用的磁翻板液位计应采取伴热或保温措施。

3.2.4.4  液化烃球罐应设高低液位报警和高高液位联锁切断进料措施。高高液位联锁的检测元件应独立设置,可采用超声波、音叉、浮球或电容式液位开关,并宜与雷达、伺服等远传液位计的高高液位信号组成“三取二”联锁切断进料,高高液位联锁的检测元件应能在线校验。高液位报警的设定高度应为球罐的设计储存液位。高高液位报警的设定高度,不应大于液相体积达到球罐计算容积90%时的高度。

3.2.4.5  紧急切断阀

a)液化烃球罐液相进出口处应设紧急切断阀,紧急切断阀的执行机构可选用气动型、液压型或电动型(优先选用气动)。当切断阀的执行机构为气动执行机构时应选用单作用气缸执行机构(故障安全性型);如已采用气动双作用气缸执行机构时应配事故空气罐。当执行机构为电动型时,其电源应通过电气ups供电,其电源电缆、信号电缆和电动执行机构应做防火保护。

b)紧急切断阀应与工艺控制阀相区别。其密封结构应采用耐火结构并符合ansi/api std607标准;允许泄漏量应符合ansi b16.104(fci 70-2)class v级或以上级。

c)液化烃球罐区防火堤外及控制室操作站(硬开关或软开关)应设置紧急切断阀联锁按钮,当球罐液位高高报警或发生火灾时,操作员能够遥控或就地手动关闭紧急切断阀,在紧急切断阀关闭后,自动联锁停止进料泵。紧急切断阀的关闭时间按下表:

紧急切断阀的完全关闭时间

公称尺寸dn(mm) 完全关闭时间(s)

≤50 ≤5

65~350 ≤10

d)紧急切断阀应能保证在易熔元件自动切断装置温度达到75±5℃时自动关闭。

e)选用的紧急切断阀应为故障安全型。

3.2.4.6  液化烃球罐区应设现场声/光报警设施。固定式可燃气体、有毒气体检测器及其他报警信号应接入现场声/光报警设施。探测器的设置及报警设定值的设定严格执行《石油化工可燃气体和有毒气体检测报警设计规范》gb 50493。

3.2.4.7  液化烃球罐区现场远传仪表及仪表控制系统应采用ups不间断电源供电,ups的后备电池供电时间不少于30分钟。

3.2.4.8  电缆宜按防火堤外桥架或埋地敷设,堤内埋地方式敷设,至设备处穿钢管保护。埋地敷设的电缆应考虑防止地下水的侵蚀。如果堤内采用仪表汇线槽盒架空敷设时,应选用阻燃型电缆。

3.2.4.9  液化烃球罐区应根据所在地区雷击概率及相关标准设置相应的电涌保护器。

3.2.4.10  液化烃球罐区仪表及控制系统的保护接地、工作接地、防静电接地、防雷接地应共用接地系统,接地电阻不应大于4ω。

3.2.5  安全监控系统

3.2.5.1  液化烃球罐区应设工业电视监控系统。室外安装的摄像机应置于接闪器有效保护范围之内;摄像机的视频线、信号线宜采用光缆传输,电源采用ups供电,各类电缆两端加装浪涌保护器;摄像机应有良好的接地,接至接地网。

3.2.5.2  远离生产厂区或独立的液化烃罐区应设周界报警系统,周界报警系统应能与工业电视监控系统联动。

3.2.6  电气及防雷防静电

3.2.6.1  液化烃球罐应设防雷接地。接地引下线不应少于2根,并沿罐周长均匀分布,冲击接地电阻不应大于10ω。

评论:更新日期:2016年05月21日

3.2.6.2  液化烃球罐支柱应设接地板,球罐的接地板直接焊接在支柱上,接地线应采用螺栓与接地板可靠连接(如果1台球罐设有n根接地引下线,则至少n-1根需要螺栓连接,另外1根可以直接焊接于接地板上,能消除基础沉降产生的应力)。

3.2.6.3  接地引下线以及接地极宜采用铜材料,如果使用热镀锌扁钢,则腐蚀性土壤条件下宜采用75mm×5mm热镀锌扁钢,其余地区不应小于40mm×4mm。采用铜线或圆铜材料的接地引下线的有效截面积应≥50mm2。

3.2.6.4  与罐体相接的电气、仪表配线(铠装电缆除外)应采用金属管屏蔽保护,电缆外皮或配线钢管与罐体作电气连接。在相应的被保护设备处,应安装与设备耐压水平相适应的浪涌保护器。

3.2.6.5  液化烃储罐及管道应采取静电接地措施。在管道进出设施、泵房、防火堤处设静电接地。

3.2.6.6  在防火堤外人行踏步处、液化烃泵房门口以及球罐扶梯入口处应设消除人体静电装置。

3.2.6.7  4根及以下螺栓连接的工艺管道法兰及阀门应做电气连接。

3.2.6.8  防雷接地、防静电接地、电气设备的工作接地、保护接地、信息系统接地等应共用接地系统,实测的接地电阻不大于4ω。

3.2.6.9  接地网应设检测井

3.2.7  消防

3.2.7.1  消防水泵房用电设备的电源,应满足现行国家标准《供配电系统设计规范》gb50052所规定的一级负荷供电要求。消防水泵房及其配电室应设事故照明,事故照明可采用蓄电池作备用电源,其连续供电时间不应少于20min。重要消防用电设备的供电,应在最末一级配电装置或配电箱处实现自动切换,其配电线路宜采用耐火电缆。油田、油库等另有专门规范规定的执行相关规定。

3.2.7.2  消防水源

a)液化烃球罐区的消防水源应可靠,供水时间不低于8h。当球罐区附近有合适水源时,可设置为消防备用水源,消防备用水源上设可靠的取水设施。

b)液化烃罐区应设稳高压消防给水系统,其压力宜为0.7~1.2mpa(g)。独立或远离厂区单独的液化烃罐区应设独立的稳高压消防给水系统。

c)消防水泵、稳压泵应分别设置备用泵,其能力不得小于最大1台泵的能力。消防冷却水泵供水能力除满足额定工况要求外,在满足150%额定流量时,水泵扬程不低于65%额定扬程。稳压泵的流量不宜小于启动1只消火栓时的流量。若考虑备用动力源,应考虑100%流量备用。

d)消防水泵应在接到报警后2min以内投入运行。稳高压消防给水系统的消防水泵应能依靠管网压降信号自动启动。

3.2.7.3  球罐区消防冷却水系统

a)液化烃罐区的消防冷却总用水量应按球罐固定式消防冷却用水量与移动消防冷却用水量之和计算。

b)消防冷却水管道应在防火堤外安全位置设置控制阀,控制阀前的配水管道宜采用内外壁热镀锌钢管或符合现行国家、行业标准规定的涂覆其他防腐材料的钢管,以及铜管、不锈钢管;控制阀后的管道应采用前述材质的管道。当控制阀前管道采用不防腐的钢管或者不能避免出现锈渣、焊渣及其他可能堵塞喷雾(喷淋)喷头的杂质时,阀前应设置带旁通阀的过滤器,管道可焊接连接;阀后管道应采用避免出现焊渣、锈渣的连接方式。阀后的镀锌钢管可采用沟槽式连接件(卡箍)、丝扣或法兰连接。严禁在预制及施工过程中损坏镀锌层。

c)容积大于等于1000m3的液化烃球罐的消防水喷淋应采用远程手动启动程序控制系统,同时具备现场手动操作功能。

3.2.7.4  液化烃罐区应设置消防应急广播。当使用扩音对讲系统作为消防应急广播时,应能切换至消防应急广播状态。

3.2.7.5  液化烃罐组宜按防火堤内面积每400m2配置1个手提式干粉灭火器,但每个球罐配置的数量不宜超过3个。

3.2.7.6  有液化烃球罐(区)的石油化工企业,如单罐容积大于等于1000m3或液化烃球罐区总容积大于等于2000m3时,应配置干粉消防车。

3.2.7.7  出罐区防火堤污水管道(沟)应设水封井及切断阀。

3.3  运行管理

3.3.1  检测制度

3.3.1.1  液化烃球罐的定期检测检验要严格执行《压力容器定期检验规则》tsg r7001和《固定式压力容器安全技术监察规程》tsg r0004的相关规定。球罐管理单位应在全面检测时提出温度计套管和球罐支柱的检测要求。

3.3.1.2  安全阀的检测检验要严格执行《安全阀安全技术监察规程》tsg zf001。

3.3.1.3  压力管道的检测检验应严格执行《压力管道安全技术监察规程-工业管道》tsg d0001。

3.3.1.4  可燃(有毒)气体检测报警仪应定期检测,周期不大于1年,并应满足当地主管部门的检测周期要求。

3.3.1.5  防雷接地应每半年检测1次(可结合法定检测进行,1次法定检测,1次管理检测),并在每年的雷雨季节前进行防雷接地的法定检测,检测时应先断开断接卡后进行测试。

3.3.1.6  对已建在采空区、煤田、软地基等不良地质条件上的液化烃球罐,应每年对罐区地基进行独立沉降观测,或者经过充分论证,制定适合当地条件的监测周期。新建球罐应避免建于上述不良地质条件地区。

3.3.2  检查、维护制度

3.3.2.1  设备检查

a)操作平台以及扶梯等通道应保持完好、畅通、清洁,不得遗留其他杂物。

b)每年应组织人员进行阀门、法兰、导淋、放空管等细小设施的检查,检查腐蚀情况以及盲板或法兰盖的配置情况等。

3.3.2.2  电视监控系统检查

a)电视监控系统必须24小时有人负责监视。

b)确保电视监控系统运行良好,如有故障及时维修。

c)保持摄像镜头清洁,图像清晰。

d)电视监控记录应至少保存1周。

3.3.2.3  仪表电气系统检查

a)每年在雷雨季节来临前组织专业人员对球罐区的等电位和接地系统进行检测,经评估必要时,应挖开地面抽、检查地下隐蔽部分锈蚀情况,如发现问题及时处理。

b)定期对仪表系统进行调试及维护,确保仪表灵敏好用。

3.3.2.4  消防系统检查

a)每年清理1次消防喷淋管网及喷头内的杂物,确保喷头畅通。

b)每月检查1次消防箱内消防器材是否齐全,是否在有效期内,消防水带是否老化、破损,不合格的水带及其他消防器材应及时更换。

c)每月对球罐的喷淋(雾)系统出水情况测试1次,发现问题及时处理。

3.3.2.5  注水堵漏系统检查应有专人负责,并定期检查,确保系统完好。

3.3.3  安全运行制度

3.3.3.1  液化烃罐区应定为一级要害部位,严格执行集团公司《关键装置要害(重点)部位安全管理规定》。应建立健全各项管理制度,并进行严格管理。液化烃球罐区的管理人员应熟悉球罐区周边情况。在应急预案中应分析球罐区周边设施的危险有害性及其重要程度(是否需要特殊保护等),判断其是否会威胁球罐区的安全运行,同时评估球罐区事故状态下的影响范围,分析在事故状态下相互影响的关系,并以此为依据制定合理可行的应急方案。一旦周边关系发生变化,应及时修订应急预案,并定期组织演练。

3.3.3.2  液化烃罐区大门明显处或者未单独设出入口的罐区明显处应设置“人员进入安全须知”告示;罐区内应设置醒目的禁止、警告、指令、提示标志和危险危害告知牌。对于泄漏有没有堵漏措施和堵漏设备,是否能够实施堵漏,能否采取倒罐措施均需给予说明。

3.3.3.3  独立或远离厂区单独的液化烃球罐区应实施封闭化管理,厂区内的化烃球罐区可依托厂区进行封闭化管理,建立严格的门禁管理制度,配备完备的门禁设施,对人员和车辆实行严格管控,对各危险源实行实时电视监控。

3.3.3.4  编制合理的液化烃罐区《工艺技术规程》和《作业指导书》,并严格执行。应控制工艺参数,不超压超温超液位指标;应控制好物料脱水,坚持三不脱水,即夜间不脱水,大雾天不脱水,雷、暴雨天不脱水,脱水时不得离人(如夜间、雾天必须脱水时,应由当班班长批准,并加强监护);收、付、倒料作业的流程设定应实行双人确认;物料采样作业应采用密闭方式,并由操作人员进行监护;实行物料管线卸压的规范化操作;认真落实员工的现场巡回检查责任和控制系统监控责任。

3.3.3.5  在寒冷及严寒地区应编制冬季防冻防凝方案,落实防冻防凝措施,并责任到人。对物料系统可能含水部位必须加伴热保温并及时排水。

3.3.3.6  严格执行国家、行业规范和企业设备管理规定。应按规范要求定期组织压力容器、管道及其安全附件的检验,不超期使用;加强对各类阀门的日常检查和维修工作,保证阀门严密、完好;做好在用设备的运行管理和备用设备的定期切换运行,运行动设备应实行点检,并做好设备运行记录;及时对故障设备设施进行检修,不带病运行。确须超期使用的设备设施应采取相应措施,并按规定办理相应手续。

3.3.3.7  对液化烃罐区配备的各种消防、气防设备设施,各种检测、报警仪表或系统等应按要求进行定期检验和维护,使其处于完好状态,并做好记录。

3.3.3.8  液化烃球罐或系统停用检修前应编制停用工艺处理方案,按方案组织工艺处理,并用盲板隔绝,经分析合格并确认后方可交出。新球罐及系统首次投用或检修后投用,应编制投用方案,必须经吹扫、置换、气密、保压、分析合格,并按确认表的要求进行逐项确认签字后方可投用。液化烃球罐首次投用前应进行含氧量分析,对于烷烃类介质氧含量应小于6%,对于爆炸范围较宽的介质氧含量应小于3%;当贮罐介质对氧含量有特殊要求时,氧含量不应超过其要求的安全值。

3.3.3.9  液化烃罐区的直接作业环节应严格执行相应管理制度,并办理相应手续。要严格控制用火作业,采取严格用火措施,各种用火(含可能产生火花)作业不得与工艺处理、采样等可能产生物料泄漏的作业交叉进行;机动车进入液态罐区必须安装阻火设施;严禁使用非防爆电器;严格控制电子器械的使用;液化烃罐区的操作应采用防爆工具;维修时应依据现场作业条件,确定是否采用防爆工具;液化烃罐区应采取其他控制火源的措施。

3.3.3.10  定期组织液化烃罐区管理和操作人员技能培训和反事故演习,提高其操作技能和应变突发事件的能力。液化烃罐区操作人员必须取得地方政府颁发的压力容器和压力管道操作资格证和企业颁发的岗位操作上岗证,做到持证上岗,并定期复审。

3.3.3.11  按照《应急程序》中物资清单配备备用应急物资,做到定人管理,定点摆放,取用方便,并做好物资清单记录,进行实物标识,并定期进行检查、维护和更新。

3.4  施工管理

3.4.1  各专业施工单位应具有相关专业的施工资质。

3.4.2  企业要向施工单位进行交底,明确施工范围,并作出标记,告知存在的危险源、可能引发的后果及控制措施。

3.4.3  施工及检维修作业前,施工单位应编制施工技术方案和应急预案,经业主审核后,向所有作业人员交底。

3.4.4  进入液化烃球罐区所有受限空间作业前,必须进行气体检测,检测合格后办理进入受限空间作业许可证。

3.4.5  在液化烃球罐区动土、动火、临时用电作业及车辆进入该区域作业必须办理相关作业许可证,否则不得作业。

3.4.6  施工单位应建立健全应急组织机构、落实职责、编制应急预案、配齐应急物资。

第11篇 原油及石油化工产品储存区重点部位的安全技术

(一)常压罐区、罐组

原油的闪点范围比较宽,一般在20—100℃之间,凝固点较高,一般都需要加热储存,极容易产生突沸。轻质成品油闪点较低,极易产生静电和泄漏并引起火灾;重油的凝固点较高,需要加热储存,某些油品加温时,因含有水分,燃烧时会发生热波传导形成突沸,因此原油和成品油在储存过程中危险因素较多。

储罐和罐区是大量危险介质集中储存的部位,一般都是国家或企业的重点管理的关键部位,都是重大危险源。在设施、设备、建筑物和构筑物以及平时管理等方面,都应充分考虑这些特点,加强维护、检查和监督工作。

(二)地坪

储罐或罐区如果发生油品渗漏、跑油,如果不能及时回收,就可能污染水源和农田。油罐火灾时可能会危及邻近设施。枯草是火源的媒介,会引起火灾或增大火势,使扑灭难度增加。较深的洼坑,易积聚油气,形成爆炸危险浓度等。

(三)水封井及排水控制装置

水封井及排水控制装置如果失去作用时,会给油品回收带来困难。泄漏的油品可以通过水封井及排水控制装置流淌到罐区之外,使污染面积增大,并诱发火灾爆炸,扩大灾害范围,国内外都曾多次发生过此类事故,损失严重。

(四)消防道路

消防道路应符合gb 50160--92(1999年版)等有关规范标准的要求。道路宽度或转弯半径不够,道路破坏、坑洼不平、堵塞,以及出现桥涵断裂坍塌等情况,都将影响消防车通行,贻误战机。

(五)防火堤

防火堤和隔堤是阻止油品溢出罐区的保护措施,符合规范要求的防火堤可以有效的缩小灾害范围和回收跑、冒油品。防火堤的容积以及结构设计和施工不符合规范要求,会给罐区带来事故隐患。发生坍塌、孔洞和裂缝等情况时,防火堤会失去作用,对安全构成威胁。

(六)油罐基础

油罐基础应能满足地震和油罐荷重的要求。油罐基础严重下沉,特别是发生严重的不均匀下沉时,将直接危及罐体的稳定性和可靠性。油罐基础设计或施工不符合要求,在地震或荷重发生突然变化时,极有可能撕裂底板或壁板等造成巨大灾害。

(七)罐体

储罐是储存介质的关键设备,也是事故的多发部位。罐本体发生变形,一定会影响储罐的强度,罐底、罐顶或罐壁,发生焊缝开裂、浮盘倾斜、密封损坏或因腐蚀减薄甚至穿孔等现象,都会给企业的安全生产带来严重的威胁,一定要严格检查和管理。

(八)储罐附件

对于罐区储罐的安全使用和管理,除了对罐本体监督而言之外,还包括各种安全附件。呼吸阀失灵,阻火器失效,放水阀或排污孑l堵塞、冻坏,加热盘管渗漏,与罐壁连接的软管损坏,以及消防泡沫竖管堵塞等,都会给油罐的安全生产或事故处理带来严重影响,除了应按规范要求进行设计之外,使用过程中还必须保证其处于良好状态。

(九)储罐防腐保温

储罐防腐保温是保证储罐长周期运行和满足工艺条件的重要措施之一。防腐或保温措施不当,会使储罐本体、附件及管线产生局部腐蚀破坏,影响正常使用。个别地方腐蚀加剧,还造成穿孔或开裂跑油;保温层破坏、低温时材料冷脆,都会给企业的安全生产带来一定的威胁。

(十)防雷、防静电接地

防雷、防静电接地装置,是确保储罐和罐区安全的最重要的安全措施之一,应该按规范要求设计、施工防雷、防静电接地装置。此外,必须在每年夏季雷雨季节到来之前,检查引下线和接地极连接的可靠性及接地电阻,确认符合规范要求。此外,还要特别注意消除雷电的静电感应和电磁感应的破坏作用,如发现断裂松脱,影响雷电流通过,或土壤电阻增大,影响雷电流疏散,应立即采取措施处理,保证其满足规范要求。

第12篇 石油化工检修过程中动火管理安全技术措施

石油化工企业的生产装置主要有精馏、吸收、离心、和加热、压缩、配电、水循环、污水处理等公用配套设施,生产过程中使用的物料主要是多种易燃、易爆、腐蚀、有毒物料,对安全生产管理要求很高,特别是检修过程中的动火管理是关系到员工的人身安全和企业稳定发展的重要因素。

由于石油化工企业生产工艺的更新速度快、及时调整,设备管道在使用过程中因受内部介质的压力、温度、腐蚀等作用,或因结构、材料、焊接工艺等先天缺陷,在生产过程中随时需要抢修,电焊、气割、塑焊等动火十分频繁,平均每天动火都在很多处,时间紧、任务重,工作中容易出现马虎和纰漏。如果不能严格执行动火管理制度,不采取必要的清洗、置换、监控等措施,就会引起火灾、爆炸、灼伤和中毒等事故,影响企业的生产经营活动和员工的人身安全。

动火管理安全技术措施的目标是两个确保:一是确保动火设备管道内部没有易燃物,二是确保动火设备管道周边没有可燃物。要做到两个确保,必须牢固树立“安全第一,预防为主”的指导思想,正确认识动火管理的重要性,增强安全意识,切实实施切断、隔离、清洗、置换、通风等安全技术措施,按程序做好申请、变更、批准、施工、监护、清理、验收等安全管理措施。

针对一个需要动火的某个生产单元,某一台贮罐或某一台设备,一定要清楚容器内部和外部物料的易燃、易爆、腐蚀、有毒物料的危险特性,采取以下有针对性的安全技术措施:

一是将动火物件移动到固定动火区动火

为便于管理,可以设立固定动火区。凡可拆卸并有条件移动到固定动火区焊割的物件,必须移至固定动火区内焊割,从而减少在生产车间或厂房内的动火工作。 固定动火区也必须做好相应的安全对策:要进行适度清洗置换,没有可燃物; 设备、管道及周围l5米范围内没有可燃物料;设备、管道在动火过程中物料分解放出可燃气体时,可燃气体或蒸汽不能扩散到其他场所;要配备相应数量的灭火器材; 作业区周围要划定界限,设立警示牌,禁止无关人员入内。

二是卸压和卸料

为避免设备管道因降温降压收缩不均匀,易产生应力而损坏的特点,要缓慢降低设备内的压力和温度,同时接好静电接地线。将设备内物料接入符合要求的产品贮存场所,在退料过程中严格控制退料速度符合规定,并注意观察有无异常情况。

三是切断隔离

现场检修,要停止与待检修设备相连接的运转设备系统。 隔断与此台设备相连接的所有进出管,使检修、焊割的设备与其他设备(特别是正常生产的设备)完全隔绝,以保证可燃物料等不能扩散到其他设备及其周围。可靠的隔绝方法是安装盲板或拆除一段连接管线。盲板的材料、规格和加工精度等技术条件一定要符合国家标准,不可滥用,并正确装配。必须保证盲板有足够的强度,能承受管道的工作压力,同时密闭不漏;盲板应安装在法兰的进口侧;盲板厚度应不低于管壁厚度;盲板应有突耳,并用明显的颜色予以标记;要用有符合规定的盲板材料。

对拆除的管路,注意在生产系统或存有物料的一侧关闭阀门。还应注意常压敞口设备的空间隔绝,保证火星不能与其他容器口逸散出来的可燃气体接触。

四是清洗

容器及管道置换处理后,其内外部必须仔细清洗。因为,有些可燃易爆介质被吸附在设备及管道内壁的积垢或外表面的保温材料中,液体可燃物会附着在容器及管道的内壁上。如不彻底清洗,由于温度和压力变化的影响,可燃物会逐渐释放出来,使本来合格的动火条件变成了不合格,从而导致火灾爆炸事故。

清洗可用热水蒸煮、碱洗、酸洗,使设备及管道内壁上的结垢物等软化溶解而除去。采用何种方法清洗应根据工艺技术的特点确定。用蒸汽和清水对设备及其连接的管道(指切断隔离点与设备连接管)交叉清洗,原则要求不少于二遍;碱洗是用氢氧化钠水溶液进行清洗,其清洗过程是:先在容器中加入所需数量的清水,然后把定量的碱片或液碱分批逐渐加人,同时缓慢搅动,待全部碱片或液碱全部加入并完全溶解后,方可通入水蒸汽煮沸。蒸汽管的末端必须伸至液体的底部,以防通入水蒸汽后有碱液泡沫溅出。禁止先放碱片后加清水(尤其是热水),因为烧碱溶解时会产生大量的热,涌出容器管道会灼伤操作者。酸洗是在水中加入适量盐酸并搅拌。先碱洗后酸洗,也可交叉进行,目的是除去设备管道内的氧化铁积存物和酸碱及油类物质。

对于用酸碱清洗法不能除尽的垢物,可用木质、黄铜(含铜70%以下)或铝质的刀、刷等方法铲除 。最后用清水冲洗干净。对地面、地沟和周边设备用蒸汽和清水冲洗干净。

五是置换

做好隔绝清洗工作之后,把容器及管道内的可燃性或有毒性介质彻底置换。 常用的置换介质有氮气、氩气等。置换的方法要视被置换介质与置换介质的比重而定,如果物料的比重大于氮气的比重,氮气应从釜上入口进,从釜下出口排出,如果物料的比重小于氮气的比重,氮气应从釜下入口进,从釜上排出,如比重相差不大,此时应注意置换的不彻底或两者相互混合。置换气体用量一般为被置换介质容积的3倍以上。以水为置换介质时,将设备管道灌满并有水从最高点溢出。

六是通风与检测

应打开容器的人孔、手孔、物料孔等,自然通风冷却,也可以用鼓风机对设备内部进行强制通风,通风冷却的同时可增加设备内部的氧气含量。

动火检测分析就是对设备和管道以及周围环境的气体进行取样分析。动火分析不但能保证开始动火时符合动火条件,而且可以掌握焊割过程中动火条件的变化情况。在置换作业过程中和动火作业前,应不断从容器及管道内外的不同部位采取气体样品进行分析,检查易燃、易爆气体及有毒、有害气体的含量。检查合格后,应尽快实施焊割,动火前半小时内分析数据是有效的,否则应重新取样分析。取样要有代表性,以使数据准确可靠。焊割开始后每隔一定时间仍需对作业现场环境作分析,动火分析的时间间隔则根据现场情况来确定,正常是不超过2小时。若有关气体含量超过规定要求,应立即停止焊割,再次清洗置换并取样分析,直到合格为止。

气体分析的合格要求是:可燃气体或可燃蒸汽的含量:爆炸下限大于4%的,浓度应小于0.5%;爆炸下限小于4%,浓度则应小于0.2%;有毒有害气体的含量应符合《工业企业设计卫生标准》的规定;操作者需进入内部进行焊割的设备及管道,氧气含量应为18%~21%。检测可燃气体含量或可燃蒸汽的爆炸范围的方法主要是用易燃易爆检测仪自动检测。

在容器及管道内需采用气焊或气割时,焊、割炬的点火与熄灭应在容器外部进行,以防过多的乙炔气聚集在容器及管道内。

七是审批

由生产车间或项目负责人对现场进行检查,重点是设备及管道内部和周边环境及地沟是否确保没有可燃物。由生产车间或项目负责人到安全管理部门申请动火作业证。安全管理部门的安全管理人员应该到现场核查,符合动火条件予以批准,不符合动火条件要说明情况落实重新清洗置换的措施。对有较大易燃、易爆、腐蚀、有毒物料特殊作业场所动火,安全管理部门要会同生产、技术、设备等部门共同制定审查动火方案并报公司分管安全的副总经理审批。

八是动火

动火人要查验动火证并熟悉作业现场情况。如不符合动火条件,有权拒绝执行并立即向公司安全管理人员报告。在动火过程中要及时观察周边环境变化,如有异常立即停止动火并报告。特殊作业动火主要有带压不置换动火和登高焊割动火。带压不置换动火,就是严格控制含氧量,使可燃气体的浓度大大超过爆炸上限,然后让它以稳定的速度,从管道口向外喷出,并点燃燃烧,使其与周围空气形成一个燃烧系统,并保持稳定地连续燃烧。然后,即可进行焊补作业。

带压不置换动火法不需要置换原有的气体,有时可以在设备运转的情况下进行,作业时间短,有利于生产。这种方法主要适用于可燃气体的容器与管道的外部焊补。由于这种方法只能在连续保持一定正压的情况下才能进行,控制难度较大,而且没有一定的压力就不能使用,有较大的局限性,也有较大风险性。因此,为增加安全保险系数,一般化工企业原则要求不准使用此办法动火。

登高焊割动火是离开基准面2米以上(包括2米)有可能坠落的高处进行焊接与切割的作业(含周边有坑、槽、沟和斜坡)。主要是在各种塔器和车间外部管架上动火。高处焊接与切割作业将高处作业和焊接与切割作业的危险因素叠加起来,增加了危险性。其安全问题主要是防坠落、防触电、防火、防爆以及其个人防护等。因此,高处焊接与切割作业除应严格遵守一般焊接与切割的安全要求外,还必须遵守的主要安全措施有:登高进行焊割作业者,衣着要轻便,戴好安全帽,穿胶底鞋,禁止穿硬底鞋和带钉易滑的鞋;要使用标准的防火安全带,不能用耐热性差的尼龙安全带,而且安全带应牢固可靠,长度适宜,高挂低用;在高处进行焊割作业时,为防止火花或飞溅引起燃烧和爆炸事故,应把动火点下部的易燃易爆物移至安全地点;对确实无法移动的可燃物品要采取可靠的防护措施,例如用彩钢板或防火毯覆盖遮严;在允许的情况下,还可将可燃物喷水淋湿,增强耐火性能;高处焊割作业,火星飞得远,散落面大,应注意风向风力,用水管及时浇灭溅落的火花;对下风方向的安全距离应根据实际情况增大,以确保安全。还应注意相近车间的地沟中有无可燃液体流出。

九是监火

监火人必须是本岗位二操以上人员,懂生产操作规程,懂灭火器材的使用方法,懂报警方法,懂急救措施,工作责任心强,动作敏捷,站在便于观察周边情况和便于扑灭溅落火花的位置。配置足够的灭火器,备用浇灭火花的水管或蒸汽管。戴好安全帽。监火期间不得离岗,不得兼作其他工作。特殊情况需短暂离岗必须落实人员临时代替。较大危险岗位监火要安排二人或二人以上。

十是清扫与验收

动火结束后,要在手续齐全的情况下拆除盲板,连接好相关管道,同时要防止物料泄漏溅落。监火人要会同动火人清扫动火现场,防止有遗留火种。符合安全要求后方可离开现场,并及时向车间主任或项目负责人报告任务完成情况。

十一是设备试压

对动火维修以后的设备及管道在使用前应进行试压,检查焊接点泄漏情况。试压方式主要有水压和气压。对密封要求较高的设备管道在气压试验过程中可以用肥皂水检查,也可以在惰性气体中加入体积比为1%的氨气,在检查点贴上硝酸银试纸,如试纸发黑则是泄漏点。在恢复生产过程中均应视情况缓慢进行,不可急升急降。

十二是非正常情况不动火

在雨、雪、浓雾天气,夜晚,六级以上大风,重要节假日,高温季节中午室外动火,如果不是生产非常急需,原则要求不动火。在动火过程中如有登高,进罐作业还要按规定办理登高作业证,进罐作业证。

动火管理是一个动态的全过程安全管理。更重要的是要有较强的安全防范意识,时刻绷紧安全生产这根弦,切实掌握石油化工企业检修过程中安全生产动火管理的安全技术措施知识,进一步提高安全生产综合技能,也才能更有效地保障企业员工人身安全和企业财产的安全,为企业的快速稳定发展打好基础

冬季如何做好化学危险品的消防安全

化学危险物品是指具有爆炸、燃烧、毒害、腐蚀等危险性质,在生产、储存、运输、使用、保存过程中,在一定条件下能引起燃烧、爆炸,导致人员伤亡和财产损失的物品。一般来讲,化学危险物品在夏季易发生事故,冬季的气候条件同样能引起化学危险物品的诸多危险。

首先,应保证室内通风良好。在冬季,尤其在北方,气温较低,人们为了御寒,在生产、储存场所,经常把门窗关闭得严严实实, 使现场通风条件较差,而易燃易爆的气体和液体在此条件下仍会挥发,这就会使其局部范围内积聚,在空气中可燃气体成蒸汽浓度达到爆炸浓度极限范围时,遇到火源就会引起爆炸引起火灾。同时,因密闭较严,安全出口不畅,泄压面积不够,更容易造成惨重损失和伤亡。

其次,防止雨雾侵入。冬季雨雪天气,对于遇水或受潮后易引发危险的化学危险物品的贮存和运输要特别重视。

第三,做好防静电工作。冬季,天干物燥,空气相对湿度小,化学危险物品尤其是液体、气体,在生产、运输、使用过程中极易产生静电,而对气体、液体来讲,其点火最低能量很小。 所以在冬季,防止静电危害显得更为重要。冬季来临,应对静电接地点进行测量,使其接地电阻符合要求;进入此类场所的人员必须穿着防静电工作服,并且在进入前,采取提前将静电释放等方法防止静电危害。

第四,雨雪天气,运输过程中应注意行车安全。冬季多雨雪天气,会造成交通状况恶劣,尤其对汽车运输在雨雪天气行车时,首先应注意提前检修车辆,使其保持良好的技术状态,尤其是制动、方向操纵、方向指示等部分,必须保证绝对良好;其次,恶劣天气的行车,要保持低车速,特别遇有通过泥泞、积雪、结冰等危险路段或遇有警告标志的,车辆行驶时速不应超过15公里,并避免使用紧急刹车或急速转向,与同方向行驶的车辆之间保持不小于30米的安全距离。

第五,采暖保温要求。冬季气温较低,对于低温下易冻结而发生危险的物品,用什么方法保温、怎样解冻要特别小心,严禁采用明火取暖,对于必要采暖场所,应按要求采用水暖,并保持安全距离。化学危险物品受冻时,严禁明火烘烤,只允许用温水或蒸汽缓慢化冻。另外,对于家庭用液化石油气罐钢瓶,冬季充装不宜过满,因室内外温差较大,当钢瓶由室外进入室内时,钢瓶会因受环境温差影响使内压升高而膨胀,引起爆炸事故。

第13篇 原油和石油化工产品的储存安全技术

一、罐区安全技术要点

(一)罐区设置

工厂在相对较高位设置罐区时应注意:

防火堤容积应大于最大储罐容量的100%;防火堤强度应在液体冲击时不垮塌;储罐地基强度应满足抗震要求。

在企业低洼位设置罐区时应注意:

储罐地基强度应满足抗震要求;防火堤容积应大于最大储罐容量的50%;防火堤强度应在液体冲击时不垮掉;尽量在厂区(库区)相对地势较低的位置设置罐区,并不对企业及周围环境造成威胁;油罐区设计时的防火间距应符合规范要求;防火堤内表面应设计能防止液体冲击时不毁坏的坚实防护层(水泥、三合土);1×104m3以上的储罐应单独设防火堤。

(二)泡沫灭火设施设计

应按规范要求采用固定、半固定液上泡沫灭火设施;大型浮顶油罐应首选设在浮船上的柔性或铰链式连接的固定、半固定泡沫灭火设施;对原油、重油储罐不建议采用固定、牛固定液下泡沫灭火设施;泡沫产生器的数量符合规范要求;泡沫供应竖管应按规范要求设置锈查清扫口;浮顶油罐内的中央排水叠管应不泄漏,最好使用挠性钢骨软管。

(三)浮船设计

应保证单盘破裂或相邻浮舱进水不沉没、不卡住;应保证施工质量,船舱隔板要求满焊为防止大型浮顶油罐的浮船上方形成爆炸危险性场所,应采用二次密封设施;检尺口应有有色软金属密封垫;施工完毕应保证浮船整体的水平度,绝对不允许发生浮船倾斜和浮力不均匀。

(四)排水系统设计

应保证含油污水排人含油污水系统;浮顶油罐内的中央排水管应不漏油并保持畅通;罐的排水叠管最好使用挠性钢骨软管;雨水出防火堤时应有可以远处确认开关状态的控制装置。

(五)罐区防雷、防静电、防震设计

良好的防雷、防静电接地;接地极数量和接地极截面积符合规范;接地电阻符合规范要求;储罐的基础设计、施工,符合当地防震等级要求;大型油罐进出口管线应用可挠性金属软管连接。

(六)储罐本体设计与施工

外观无坑凹及应力集中区域;基础无塌陷、不发生不均匀下沉并满足抗震要求;储罐底板和圈板等本体焊接外观检查质量合格,探伤检查符合规范要求。浮顶油罐浮船上下自如,无卡碰现象;大型油罐罐本体应有高液位报警装置和带联锁的高高液位报警装置;大型油罐罐内的加热装置安装无应力集中、膨胀不受限;大型油罐应设自动切水装置;拱顶油罐罐顶应有弱焊部位。

(七)安全监控设施

油罐区应按规范要求设置可靠的可燃气体报警仪;油罐区可燃气体报警仪安装位置和数量也应符合规范要求;大型油罐应有带安全联锁的高液位报警;大型油罐应有带联锁的快速切断阀;大型油罐应有可靠的自动切水装置;压力储罐连接管线应有安全阀。

二、储罐区事故案例介绍

在这里简要介绍一些国内外重大事故案例,以说明石油储罐区的危险性并分析事故原因,以提高储罐区的安全管理水平,避免恶性事故发生。

1975年美国宾夕法尼亚州费城炼油厂在油轮向改装的10000m3的内浮顶罐卸原油时发生火灾,短时间内原油罐发生爆炸,大火把邻近的油罐包围,涉及了四座油罐和一些建筑设施,也损坏了一些管线,酿成大面积火灾,一直着了9天9夜才被扑灭。事故损失达3233万美元。

1977年9月24日,美国伊利诺斯州罗姆维尔发生一起雷击火灾事故。当时雷电击中一台约40000m3的拱顶柴油罐,罐顶损坏,碎片飞出约70m击中了一座约10000m3的浮顶汽油罐,和一座约30000m3的浮顶汽油罐。拱顶油罐和浮顶油罐当即发生全截面火灾,着火4h以后,浮顶下沉,46h后大火被扑灭,灭火共消耗了约88000l泡沫。事故损失约1836万美元。

1981年8月29日,科威特舒埃巴发生了一起直接摧毁了8座油罐和破坏数座油罐炼油厂油罐区火灾,尽管事故原因始终没有真正揭开,但是推断原因大概是有6台25000m3的石脑油罐区内的机泵故障引起。火灾发生时,油泵正向一座油罐送油。火灾发生后约30rain,第一台油罐的密封圈起火,接着另外两台油罐也迅速着火,最终将6台油罐全部卷入火中,灭火工作持续了140h,64h以后又将邻近的5座油罐引燃,事故损失高达1.5912亿美元。事故原因不详。

1983年7月18日,美国新泽西州钮瓦克的一座油库在向一座约7000m3的油罐输送汽油时发生冒罐事故,大约200吨汽油流人罐区防液堤内,微风把形成的蒸汽云团带到250m以外的修理工厂的煅烧炉,引起回火爆炸。爆炸烧毁了约50000吨油品,造成约1000万美元的损失,并造成铁路和邻近的财产损失约2500万美元,总损失额度达到4886万美元。类似的事故国内先后发生多起,以南京的北京东方事故为著,液化石油气事故还有小梁山和西安事故震惊中外。

1983年8月30日,英国密尔福德港的一座100000m3的浮顶油罐发生火灾,火源可能是离储罐90m以外的火炬排出的炙热的烟炱粒子。着火罐单独布置在一个防液堤内,设计有单独的机械密封和泡沫隔板,但是火灾发生时发现没有泡沫输送管道和出口(与金陵火灾相似),单板浮顶上有几条延伸超过28cm的裂纹,有一些油渗出浮顶。大火先在一半的浮顶燃烧,然后迅速蔓延到观点全表面。12h后油罐发生强烈沸溢,将储罐周围形成一片火海,大火持续了约40h,将罐内的油品和储罐全部烧毁,事故损失约1550万美元。

1985年12月21日,意大利那不勒斯一座有32座油罐的油罐区中的24座油罐被一场大火烧毁,事故原因是在向罐内卸27000t汽油时发生冒罐,外溢的汽油蒸汽被不明火源点燃,大火迅速将4英亩区域内的20座油罐覆盖,整个油罐区被大火笼罩,剧烈的大火整整燃烧了三天半,损失56100万美元。

1993年6月15日,我国某厂油品车间操作工误把罐底脱水阀当做中央排水阀打开,造成跑原油146t;同年12月16日,接收原油时未检尺,造成冒罐,跑原油367t的事故。同样的事故在1990年12月24日也曾发生过,由于没有吸取教训,造成再次事故。

1994年1月2日,委内瑞拉lake maracaibo的一座原油输油站在转运原油时爆炸起丸致使1人死亡、2人失踪。

1995年10月24日,印度尼西亚芝拉扎炼油厂,雷击使未接地的浮顶油罐着火,火灾传播到另外6个储罐,使3个储罐完全毁坏,4个储罐严重损坏,大火燃烧了20余h,事故损失约3540万美元,工厂因此3年未能满负荷生产。

汽油或石脑油罐一般都用内浮顶式油罐或外浮顶式油罐以减少蒸发损失并提高油品储存的安全性。这种油罐多是炼油化工企业中容积较大的设备,因为大量储存着易燃易爆的汽油、石脑油类轻质油品,所以也是工厂严格控制和管理的重大危险源。外浮顶式油罐储存汽油但是容易污染成品,密封圈泄漏还会使浮船上空形成爆炸性气体云团;内浮顶式油罐相比较应该是储存轻质成品油比较理想的设备。但是,无论内浮顶式油罐还是外浮顶式油罐都存在着火灾爆炸危险性。

上述事故说明,油罐区、特别是轻油罐区火灾是十分危险和可怕的,除了天灾以外,误操作、油罐内液体外溢是造成火灾爆炸的根本原因。罐内液位控制不好,液位超高冒罐,罐底乃至罐壁腐蚀穿孔或开裂,以及阀门损坏、管线断裂形成的跑油事故频率是很高的,带来的国家财产损失及环境污染也是十分严峻的。

此外,因为雷击酿成的浮顶油罐火灾事故在诸多炼油厂也曾发生过多起,其事故危害和社会影响都很大,必须引起足够的重视。

三、重点部位的安全技术

(一)常压罐区、罐组

原油的闪点范围比较宽,一般在20—100℃之间,凝固点较高,一般都需要加热储存,极容易产生突沸。轻质成品油闪点较低,极易产生静电和泄漏并引起火灾;重油的凝固点较高,需要加热储存,某些油品加温时,因含有水分,燃烧时会发生热波传导形成突沸,因此原油和成品油在储存过程中危险因素较多。

储罐和罐区是大量危险介质集中储存的部位,一般都是国家或企业的重点管理的关键部位,都是重大危险源。在设施、设备、建筑物和构筑物以及平时管理等方面,都应充分考虑这些特点,加强维护、检查和监督工作。

(二)地坪

储罐或罐区如果发生油品渗漏、跑油,如果不能及时回收,就可能污染水源和农田。油罐火灾时可能会危及邻近设施。枯草是火源的媒介,会引起火灾或增大火势,使扑灭难度增加。较深的洼坑,易积聚油气,形成爆炸危险浓度等。

(三)水封井及排水控制装置

水封井及排水控制装置如果失去作用时,会给油品回收带来困难。泄漏的油品可以通过水封井及排水控制装置流淌到罐区之外,使污染面积增大,并诱发火灾爆炸,扩大灾害范卧国内外都曾多次发生过此类事故,损失严重。

(四)消防道路

消防道路应符合gb 50160--92(1999年版)等有关规范标准的要求。道路宽度或转弯半径不够,道路破坏、坑洼不平、堵塞,以及出现桥涵断裂坍塌等情况,都将影响消防车通行,贻误战机。

(五)防火堤

防火堤和隔堤是阻止油品溢出罐区的保护措施,符合规范要求的防火堤可以有效的缩小灾害范围和回收跑、冒油品。防火堤的容积以及结构设计和施工不符合规范要求,会给罐区带来事故隐患。发生坍塌、孔洞和裂缝等情况时,防火堤会失去作用,对安全构成威胁。

(六)油罐基础

油罐基础应能满足地震和油罐荷重的要求。油罐基础严重下沉,特别是发生严重的不均匀下沉时,将直接危及罐体的稳定性和可靠性。油罐基础设计或施工不符合要求,在地震或荷重发生突然变化时,极有可能撕裂底板或壁板等造成巨大灾害。

(七)罐体

储罐是储存介质的关键设备,也是事故的多发部位。罐本体发生变形,一定会影响储罐的强度,罐底、罐顶或罐壁,发生焊缝开裂、浮盘倾斜、密封损坏或因腐蚀减薄甚至穿孔等现象,都会给企业的安全生产带来严重的威胁,一定要严格检查和管理。

(八)储罐附件

对于罐区储罐的安全使用和管理,除了对罐本体监督而言之外,还包括各种安全附件。呼吸阀失灵,阻火器失效,放水阀或排污孑l堵塞、冻坏,加热盘管渗漏,与罐壁连接的软管损坏,以及消防泡沫竖管堵塞等,都会给油罐的安全生产或事故处理带来严重影响,除了应按规范要求进行设计之外,使用过程中还必须保证其处于良好状态。

(九)储罐防腐保温

储罐防腐保温是保证储罐长周期运行和满足工艺条件的重要措施之一。防腐或保温措施不当,会使储罐本体、附件及管线产生局部腐蚀破坏,影响正常使用。个别地方腐蚀加剧,还造成穿孔或开裂跑油;保温层破坏、低温时材料冷脆,都会给企业的安全生产带来一定的威胁。

(十)防雷、防静电接地

防雷、防静电接地装置,是确保储罐和罐区安全的最重要的安全措施之一,应该按规范要求设计、施工防雷、防静电接地装置。此外,必须在每年夏季雷雨季节到来之前,检查引下线和接地极连接的可靠性及接地电阻,确认符合规范要求。此外,还要特别注意消除雷电的静电感应和电磁感应的破坏作用,如发现断裂松脱,影响雷电流通过,或土壤电阻增大,影响雷电流疏散,应立即采取措施处理,保证其满足规范要求。

四、重点部位安全技术要点

(一)地坪

罐区地坪应保持不小于0.01的坡度,坡向排水闸或水封井。

凡铺砌夯筑的场地不应有裂缝和凹坑,裂缝要填实,沉降缝要用石棉水泥填实抹平,以防止渗水、渗油和油气积聚。

不铺砌的场地,要定期拔除高棵和阔叶草类,及时清除枯草干叶。

防火堤内不准堆放可燃物料。

(二)水封井及排水封闭装置

应在罐区防火堤外修建水封井,用来回收储罐跑、冒、漏出的油品,并防止着火油品向外蔓延。

水封井应不渗不漏,水封层宜不小于0.25m,沉淀层也不宜小于0.25m。要经常检查水封井内液面,发现浮油要查明原因,并及时抽出运走。

储罐排水封闭装置要完好可靠。每班都指定专人管理,下雨时开启,平时关闭,并列入交接班内容。

寒冷地区油库\罐区的水封井和排水封闭装置要有防冻措施。

(三)消防道路

任何时候都必须保持消防通道路面、路肩完好、畅通。需临时挤占消防道路要严格审查,限期使用并恢复。

消防通道与储罐间的隔离带内,不得种植乔木和油性树种。种植其他树种时,株距和位置不应影响对罐区、储罐的火灾扑救和冷却作业。

应定期检查道路边沟和桥涵,清除淤积尘土杂物。

(四)防火堤

应按时巡检,发现裂缝、坍塌、枯草等及时修理、清除。

防火堤上穿管处的预留孔,要用不燃材料密封,并保持密封完好状态。

穿堤的排水孔应保持通畅,关闭后应无渗漏。

(五)储罐基础

每年应对储罐基础的均匀沉降、不均匀沉降、总沉降量、锥面坡度集中检查1次,并做到:

基础稳定后(一般为5年),均匀下沉量每年不超过10mm。

不均匀下沉量:相邻两点(间隔6m)未装油时,偏差不应大于20mm。装满油时,偏差不大于40mm。

任意两点未装油时,偏差不大于50mm,装满油时,偏差不大于80mm。浮顶罐及内浮顶罐其允许偏差值减半。

使用20年以上储罐,可在上述允许偏差值基础上加大50%,但偏差值应不再继续增加。

基础边缘应高出罐区地坪300mm。

基础护坡完好,出现坡石松脱、裂缝时,应及时固定灌浆。

要经常检查砂垫层下的渗液管有无油品渗出,发现渗漏,应立即采取措施处理。

(六)罐体监督

1.罐底

应按规定时限进行清罐处理。并利用储罐定期清洗时间,对储罐底板厚度进行测定,并记录在册。允许腐蚀后的最小余厚和凸凹变形应满足:

原厚度<4mm,剩余厚度≥2.5mm。

原厚度>4mm,剩余厚度≥3.0mm。

凸凹变形,不得大于变形长度的0.02,最大不应大于50mm。

使用树脂堵塞和铅丝捻缝的办法进行堵漏属于临时措施,不得长期使用树脂堵塞和铅丝捻缝的办法进行堵漏。对已经发现的裂纹、砂眼、针孔等缺陷,应限期清罐修理。

2.罐壁

可利用储罐定期清洗时,检查罐壁的腐蚀余厚,其剩余厚度不得低于《石油库设备检修规程》和《石油库设备完好标准》规定的允许值。局部腐蚀严重的壁板,超过最低允许值时,应更换新板或采取补强处理。

使用20年以上的储罐,腐蚀余厚接近最低允许值时,一定要采取减少装满高度,减轻呼吸阀盘重量,改装重质油品,清洗后内涂弹性聚氨酯等防护措施进行处理。

储罐罐壁凸凹、鼓包、折皱不得超过《石油库设备检修规程》和《石油库设备完好标准》的规定。使用20年以上或折旧期届满的储罐,如变形不继续增加,其偏差值可增加50%,但—定要采取相应的防护措施。

罐壁出现明显的倾斜时,应进行测量,各圈壁板偏离垂直母线和罐壁总倾斜度均不得超过允许标准,否则应进行修理和矫正。

应确保储罐罐壁的各纵横焊缝,特别是底圈板与底板的“t”形缝完好无渗漏现象。

(七)罐顶

储罐的罐顶板焊缝应完好,无漏气现象,机械性硬伤不超过lmm,腐蚀余厚不小于原来厚度的60%,且不得小于3.5mm,否则应换新板或增设防雷设施(有独立避雷针者除外)。构架和“弱顶”连接处应无开裂脱落现象。拱型罐顶板不应有凸凹变形或积水。

(八)浮盘装置

导向量油柱应垂直。有不垂直度时也应符合使用要求。一般情况下垂直偏差不应大于0.0015,最大值不应超过25mm。

浮顶罐、内浮顶罐的浮盘漂浮在任何位置时都应平稳,不倾不转,不卡不蹩。浮盘的边缘与储罐内壁间隔偏差不应大于40mm。

浮顶罐、内浮顶罐的浮盘都应无渗漏。

浮盘环状密封的工作状态应保持良好,无破损浸油,无翻折或脱落等现象。

(九)储罐附件

1.呼吸阀

呼吸阀应按制度要求进行定期检查,但每月检查次数不应少于2次。在气温低于0℃时,每周至少检查1次。大风、暴雨骤冷时立即检查,做到不拖不等,避免事故发生。阀盘平面与导杆保持垂直,允许偏差不大于0.1mm,导杆与导孔径向间隙四周不大于2mm,满足升降自由,不卡不涩的要求。阀盘与阀座接触面积应不少于70%。

2.阻火器

应按制度要求对阻火器进行定期检查,但每月检查次数不应少于2次,确保其可靠性。

3.量油孔 量油孔导尺槽应为有色金属制造,并稳定、牢固;盖与座之间的密封良好,无老化现象。

4.加热盘管

加热盘管不使用时应将排水端敞开,并打开阀门,检查有无渗油;冬季加热盘管使用前应进行试压、试漏并满足要求;要结合清罐对加热盘管进行认真检查,发现问题及时处理和调整加热管的支架,以满足回水坡度的要求。各阀门或疏水器工作应正常,操作灵活,不渗不漏。

5.进出油连接管

进出油连接管的连接处应无裂纹和无严重变形;阀门应严密并启闭灵活;进出油管宜采用双阀控制,靠近油罐一侧的阀门为常开,经常保持备用的良好状态;进出油管应有因管墩管架、储罐基础的沉降及环境温度的变化而自行补偿的措施,大型油罐应有挠性软管连接,任何连接方式都不能影响罐壁和管件的安全。

6.梯子、平台及栏杆

梯子、平台及栏杆应焊接安装牢固,不晃动;罐顶边缘的安全保护栏杆高度,不应低于600nan,竖梯保护“腰带”的高度应为450mm左右;寒冷地区储罐量油孔面向冬季主导风一侧,也可用钢板焊制一个防风罩;盘梯栏杆的始端,应留出600mm长度不刷油,做人体静电导出装置,也可用镀锌角钢、镀锌钢管代替,便于上罐操作人员预先消除身上静电;寒区储罐的踏步宜采用扁钢或钢筋焊制,防止储罐的踏步上积雪和化雪成冰积累。

7.储罐的防腐及保温

储罐的防腐及保温应根据储存油品的性质、地区环境等选择合适的防腐涂料,一般来说选择的涂料应具有良好的静电消散性能,不论内涂或外涂,涂料的电阻率都不宜大于规定值,否则要采取其他相应措施;防腐涂层涂着部位要进行认真的除锈涂层应均匀涂着,无漏涂、流坠、起皮、鼓泡、龟裂、皱纹,颗粒突出等现象;大型储罐进行电化学保护时,一定要妥善设置外加电源和绝缘法兰,防止杂散电流窜人;储罐保温结构不论是砌体、缠挂体、镶嵌体或直接喷塑体,都要求紧贴牢固、填充饱应满,发现脱落应立即修补;保温材料应为不燃或难燃物质,氧指数应符合不小于30及有关规定的要求。要采取罐顶设置防雨掾、罐底圈板防护等方式进行防水保护处理,并经常检查防水防潮设施完好性,以防止雨水、喷淋水、地面水等浸湿或浸润保温材料,防护措施如有损坏应立即进行修理;要采取可靠的措施对罐底进行防腐保护,要有防止雨水或喷淋水进入罐底的防护措施,防止罐底发生腐蚀。

8.防雷设施及接地系统

凡装设独立或以罐顶为接闪器的防雷接地设施,一定要每年雷雨季节到来之前检查1次防雷接地系统。做到:

接地极安装牢固,引下线的断接卡接头应密贴无断裂和松动;连接螺栓与连接件的表面有无松脱和锈蚀现象,发现问题应及时擦拭紧固;由有资质的单位和个人进行接地电阻检测,检测方法正确,接地电阻值符合规范要求;无接闪器的储罐,也要在每年雷雨季节到来之前进行一次检查,确认罐顶附件与罐顶金属无绝缘连接;防止呼吸阀与阻火器、阻火器与连接短管之间的螺栓螺帽,无锈蚀、松脱而影响雷电流通过现象;对浮顶及内浮顶储罐,每年要检查两次浮顶及内浮顶储罐的浮盘和罐体之间的等电位连接装置是否完好,软铜导线有无断裂和缠绕;对单纯的防感应电和静电接地装置,每年至少检测1次,其电阻值应符合规范要求;罐区有地面和地下工程施工时,要加强对接地极的监护,进行可能影响接地极接地电阻的作业时,要在施工后立即进行检查测定并记录在案。

9.安全监测设施

凡有条件的储油库,一定要按规范要求设置对储罐的监测设施及仪表。监测设施包括储罐液面检测和高低液位报警;储油温度检测可燃气体报警仪等罐区检测及显示仪表。储罐各种检测仪表的防爆特性应满足储存介质的安全等级,安装应符合有关规范的要求。

第14篇 安全技术在石油化工生产中的重要性

一、安全技术

生产过程中存在着一些不安全或危险的因素,危害着工人的身体健康和生命安全,同时也会造成生产被动或发生各种事故。为了预防或消除对工人健康的有害影响和各类事故的发生,改善劳动条件,而采取各种技术措施和组织措施,这些措施的综合叫做安全技术。

二、安全技术的重要性

安全技术是劳动保护科学的重要组成部分,是一门涉及范围广、内容丰富的边缘性学科。

安全技术是生产技术发展过程中形成的一个分支,它与生产技术水平紧密相关。随着石油化工生产的不断发展,石油化工安全技术也随之不断充实和提高。

安全技术的作用在于消除生产过程中的各种不安全因素,保护劳动者的安全和健康,预防伤亡事故和灾害性事故的发生。采取以防止工伤事故和其他各类生产事故为目的的技术措施,其内容包括:

(1)直接安全技术措施,即使生产装置本质安全化;

(2)间接安全技术措施,如采用安全保护和保险装置等;

(3)提示性安全技术措施,如使用警报信号装置、安全标志等;

(4)特殊安全措施,如限制自由接触的技术设备等;

(5)其他安全技术措施,如预防性实验,作业场所的合理布局,个体防护设备等。

从上述情况看,安全技术所阐述的问题和采取的措施,是以技术为主,是借安全技术来达到劳动保护的目的,同时也要涉及有关劳动保护法规和制度、组织管理措施等方面的问题。因此,安全技术对于实现石油化工安全生产,保护职工的安全和健康发挥着重要作用。

三、安全技术的内容

安全技术是劳动保护科学中的一个学科,它可以分为“产业(部门)劳动保护学”,如煤矿安全技术、冶金安全技术、机械制造安全技术、建筑工程安全技术等等;“专门劳动保护学”,如电气安全技术、工业锅炉安全技术、起重安全技术等等。

本书中,安全技术的内容主要有:

(1)防火防爆安全技术;

(2)电气安全技术;

(3)压力容器与工业管道安全技术;

(4)锅炉安全技术;

(5)工业卫生和防尘防毒安全技术;

(6)石油化工生产装置检修安全技术;

(7)石油化工操作安全技术;

(8)安全控制和检测安全技术;

(9)地震和抗震安全技术;

(10)安全管理等。

安全技术是一门科学,所以必须努力学习并尽快掌握它,否则要想做到安全生产是比较困难的。

第15篇 石油化工原料和产品运输安全技术

一、石油化工原料和产品运输方式

石油化工原料和产品运输环节是连接原料基地、生产企业、销售企业、终端用户的纽带和桥梁。按输送方式可以分为管道输送及移动装备输送。移动装备输送又可以大体分为铁路运输、公路运输、水路船舶运输等。附属装备还包括装卸台(铁路和公路装卸台)、码头、泵房等。因为石油化工原料和产品运输环节的面广线长,稍有疏忽就可能酿成事故,所以必须特别注意安全管理和安全技术问题。

二、石油化工原料和产品的标签和安全技术说明书

正如分类中所述的那样,石油化工原料和产品大都属于危险化学品。在生产、使用及运输这些危险化学品过程中,其对职工及环境的潜在危害越来越引起人们的关注。在当今科技和产品不断更新的时代,有关石油化工原料和产品的安全储存、运输和使用的问题也日趋尖锐。随着我国加入wto及经济全球化的发展。迫切需要我们保障石油化工原料和产品的安全储存、运输和使用中的安全。

以标签和安全技术说明书的形式进行传播,就是一个很好的途径。国际劳工大会1990年通过的第170号《化学品公约》和177号建议书为建立安全使用化学品国家系统提供了一个基本的框架。在储存运输过程中,正确区分和识别所有的石油化工品(包括无毒害化学品)是至关重要的。中国政府于1995年1月批准了《化学品公约》,并成为亚太地区第一个批准这一公约的国家,这是中国政府促进化学品安全生产和使用的一个承诺。并为达到公约各条款的要求而采取了一系列的措施。最近,中国政府又先后实施了《安全生产法》、《危险化学品安全管理条例》、《使用有毒物品作业场所劳动保护条例》、《国务院关于特大安全事故行政责任追究的规定》等法令、法规,制定了《编写危险化学品技术说明书标准》(类似信息卡)和《编写危险化学品标签导则》等相应的国家标准,全面实施对危险化学品的安全管理和监督。

为了使人们能在储存运输过程中,正确区分和识别、安全使用所有的石油化工品,要求生产厂家为生产出厂的石油化工原料和产品设置明显的标签和安全技术说明书,并随石油化工原料和产品运输全过程转移。

标签的内容应包括:

①商业名称;

②物质特性;

③供应商的姓名、地址和电话;

④危险标志;

⑤使用此种物质的特殊风险;

⑥安全须知和预防措施;

⑦批号;

⑧应雇主要求对该物质的安全信息做更详细的说明。

标签要求一定要清晰、耐用、大小适当,易于理解。

安全技术说明书的内容应包括:

①该物质的商业名称和化学名称的统一性说明;

②供应企业的地址,以便使用者欲知详情时及时联系;

③按国家统一的化学品分类方法标志明显的特性,如毒性、刺激性和爆炸性等;

④对该物质的有关危害的详细说明,包括毒性特点、接触界限、储存条件、禁忌介质等;

⑤安全须知和预防措施,如应具备基本的通风条件,用橡胶手套保护皮肤避开热源和火源等。

告知工人的权利和义务:

要为在工作中需要接触和使用石油化工原料和产品的工人做出如下承诺:

①工人有权从即将发生危险的现场撤离,但必须立即报告上级主管;

②工人有权了解所接触的化学品的特性危害及安全措施;

③工人有权阅读标签和信息卡,以保征工人自身安全。

为了确保安全,接触化学品工人也要遵循几项义务;

①工人应当同雇主紧密合作,执行安全操作计划和现场安全管理;

②工人应遵循工作场所的安全操作规程,严禁违章操作;

③工人应努力消除或减少对自身或他人造成的危险。例如,一种物质泄漏时可能对邻近岗位造成危害,并在条件允许时事先通知他人,以减少危害。

《石油化工安全技术15篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关专题

相关范文

分类查询入口

一键复制