第1篇 乙烯裂解分离单元操作安全技术
裂解分离装置是以轻柴油、石脑油为原料,通过管式裂解炉进行热裂解反应,生产乙烯、联产丙烯、混合碳四、裂解汽油等产品。生产工艺复杂,危险性大,具有易燃、易爆、易中毒的特点。装置的主要化学反应有裂解反应、乙炔加氢反应、甲基乙炔和丙二烯加氢反应。最典型的裂解反应其机理十分复杂,同一种烯烃可以平行地发生多种反应(一次反应)又可以连串地发生许多后继反应(即二次反应)。为了减少不必要的二次反应,往往要用高温短停留时间,低烃分子和较大的稀释蒸汽用量的工艺方案。裂解分离单元主要包括裂解气冷凝初分馏、工艺水汽提和稀释蒸汽发生、气体分离、裂解气干燥、冷箱及脱甲烷、脱乙烷、乙炔加氢、乙烯精馏、脱丙烷及丙炔(丙二烯)加氢、丙烯精馏、脱丁烷、丙烯制冷、乙烯制冷等部分。各部分工艺操作各不相同,安全特点及危险性也各不相同,典型的操作问题如下:
(一)裂解炉超温结焦与火灾危险
裂解反应是在880℃高温下进行的吸热反应。由于温度高、停留时间短,温度与停留时间的控制非常严格。如果裂解温度过高或停留时间增长,二次反应增多,裂解物料就会成为焦油等胶质物,堵塞炉管,严重时会造成炉管烧毁、炉膛爆炸。所以一定要按要求认真进行岗位巡回检查,及时检查各点温度变化,要精心控制炉管出口温度,及时调整进料量和稀释蒸汽量;检查炉膛内氧含量和有机物含量;检查原料油和燃料油液位及各联锁和可燃气体报警仪等的运行情况,如有异常及时处理。
1.裂解炉在点火时注意事项
(1)点火前必须分析可燃物。可燃物炉前应<0.3%、炉膛<0.2%。
(2)保持炉内合适的负压。
(3)点火棒在炉前点燃,不能使用轻质油或易挥发油类。
(4)人侧立火嘴前,防止回火伤人。
(5)火嘴突然熄灭,应立即关闭燃料气阀,等数分钟后重新分析、点火。
2.结焦的原因
裂解炉由于二次反应而出现“结焦先兆”,随着时间延长焦越积越多,以至会形成坚硬的焦层,不仅影响传热,降低乙烯收率,严重时会堵塞炉管,造成事故,所以炉管必须定期清理。炉管是否结焦,一是看炉管表面有无过热点或“热炉管”现象,炉管发红时,应立即进行清焦;二是大部分炉管表面平均温度达1070℃或任意一根炉管温度达1093℃时,应立即清焦。一般来说导致结焦的原因有:
(1)原料油中重双烯烃过多;
(2)反应温度高;
(3)进油量低,停留时间长;
(4)稀释蒸汽量小;
(5)火焰不均,局部过热;
(6)原料和稀释蒸汽进料分布不均匀;
(7)原料预热器漏。
(二)消除可燃物泄漏是操作安全的保证
(1)乙烯、丙烯等高压气体泄漏时无色,烯烃类异味也不大,不易引起人们注意。操作中一定要一点一滴地消除装置的跑、冒、滴、漏;
(2)高温裂解和乙炔加氢过程中,可能生成乙炔低聚物(绿油)等,如果泄漏,遇空气会发生火灾爆炸事故。
(三)裂解气压缩机安全操作
在压缩操作中,乙烯压缩机、丙烯压缩机和裂解气压缩机(俗称“三机”)以其功率大、设备复杂、操作难度大、操作要求高、危险性大而最具有典型代表性。乙烯压缩机、丙烯压缩机和裂解气压缩机都为多段离心式压缩机,裂解气压缩机负荷变化大,压缩过程冷凝液多,压缩机“喘振”威胁较大,操作危险性也比较大。
1.正常操作要点
(1)精心检查,及时排出冷凝液,防止压缩机带液;
(2)精心调整润滑和冷却系统,防止压缩超温,防止传动部位润滑不良而发热;
(3)精心操作,仔细检查各传动部位的声音和运转情况,及时发现和处理设备故障;
(4)调整稳定和平衡各段进气量,防止超压,防止压缩机“喘振”;
(5)随时检查各仪表及联锁的运行情况,检查可燃气体报警仪运行情况和消防器材完好备用情况。检查设备系统的泄漏情况。
2.“喘振”操作处理
“喘振”也称为“脉振”,是压缩机操作中时常遇到的问题。压缩机喘振严重时会造成机组损坏。运行中如果压缩机出现流量、排气压力周期性波动,压力表和流量表强烈摆动,有周期性气流吼声,机组的机体、轴承的振幅急剧增高,机组出现强烈振动等异常现象就是压缩机的喘振。
喘振的基本原因是通过压缩机入口的流量过小、已接近或进入压缩机设计性能的喘振区。从而使压缩机排出压力下降,造成管网中高压气体倒灌,而压缩机又将气体压到出口和管网,这就形成气流振荡,造成强烈的机械振动并发出吼声。
(1)工艺上防喘振的措施有:
①压缩机出口系统高压气体放火炬,以增加压缩机入口流量;
②回流,即将压缩机出口后系统部分高压气体回流到压缩机入口,以增加压缩入口流量;
③增设防喘振的自动控制系统。
(2)在实际操作中,引起喘振的主要表现为:
①压缩机段间流量不够;
②段间压缩比不平衡;
③机体带液;
④吸入压力低;
⑤吸入温度高;
⑥入口过滤网堵;
⑦五段出口压力过高;
⑧气体分子量变化大;
⑨防喘振系统失灵,仪表或仪表空气出现问题;
⑩机体、管道、出口换热器等结焦。
(3)操作中处理喘振通常使用以下方法:
①调整段间流量;
②调整段间压力;
③机体及系统排液;
④查明原因,适当降低温度;
⑤降低转速、调节循环量;
⑥请示车间处理;
⑦五段出口适当放火炬,查明原因处理;
⑧检查仪表、自控系统,联系仪表处理。
第2篇 制作110kv及以上交联聚乙烯绝缘电缆头的安全技术
1、制作110kv及以上交联电缆终端与中间接头的关键问题
(1)绝缘界面的性能
1)电缆绝缘表面的处理。常规的电缆绝缘表面的处理方法是用刮刀、玻璃片等工具刮削后用砂纸抛光。
2)界面压力。实验表明,界面压力达到98kpa时,界面的击穿场强达到3kv/mm,如果界面压力达到500~588kpa,界面的击穿场强就能达到11kv/mm。
(2)绝缘回缩问题
当切断电缆时,就会出现电缆绝缘逐渐回缩和露出线芯的现象。一旦电缆绝缘回缩后,中间接头中就产生导致致命的缺陷--气隙。在高电场作用下,气隙很快会产生局部放电,导致中间接头被击穿。
(3)防潮、防水
高压交联聚乙烯绝缘电缆进水后,在长期运行中会出现水树枝现象,使交联聚乙烯绝缘性能下降,最终导致电缆绝缘击穿。
交联电缆进潮的主要路径之一是从电缆附件进潮或进水。潮气或水分一旦进入电缆附件后,就会从绝缘外铜丝屏蔽的间隙或从导体的间隙纵向渗透进入电缆,从而危及整个电缆系统。
在安装电缆附件时应该十分注意防潮,对所有的密封零件必须认真安装。在直埋敷设时的中间接头,必须有防水外壳。
2、制作110kv及以上交联电缆终端与中间接头安全技术
(1)施工现场
施工现场应保持清洁、无尘土。一般情况下,施工现场的环境温度应高于5℃相对湿度不应超过75%。在必要时,可以采取搭帐篷和安装空调机等措施来满足上述对施工现场的要求。
(2)材料准备
1)按产品装箱单检查零部件是否齐全、有无损伤或缺陷。特别是应力锥、o形密封圈及与o形密封圈的所有接触表面不能有损伤或缺陷。
2)各零部件的安装尺寸应符合制造厂提供的图纸要求。
(3)电缆准备
1)预热电缆并校直电缆。一般的方法是使用带温控(约80℃、6h、过热保护为115℃)的加热带子,在电缆和带子之间有足够的衬垫。加热完毕后将加热带子除去,并用三角铁(或平板)将电缆绑住校直,让电缆自然冷却。
2)剥切半导体屏蔽和电缆绝缘处理。在除去半导体绝缘屏蔽时应尽量减少表面毛刺及划痕,保持电缆绝缘表面光滑。然后用砂布打磨电缆绝缘。要保证半导体绝缘屏蔽与主绝缘之间的平滑过渡且无任何毛刺和划痕。在用砂布打磨电缆绝缘过程中,应注意使用蘸了有机溶剂的抹布反复擦拭嵌在绝缘中的外部杂质。擦拭可反复进行,以保证电缆高度清洁。擦拭应始终保持从电缆绝缘向半导体绝缘屏蔽方向擦,以防止半导体颗粒擦到绝缘体上。
(4)压接出线杆
压接方式必须符合制造厂提供的图纸要求。压接结束后用锉刀和砂纸将压模留下的压痕打磨光滑,再用干净揩布擦净附着的铜屑。
(5)安装应力锥、环氧树脂预制件或橡胶预制件
安装前,先用清洗剂清洁电缆绝缘表面及应力锥内、外表面。待清洗剂挥发后,在电缆绝缘表面及应力锥内、外表面上均匀涂上少许硅脂。
用色带做好应力锥在电缆绝缘上的最终安装位置的标记。
用制造厂提供(或认可)的专用工具把应力锥套入相应的标志位置。
用清洗剂清洗掉残存的硅脂。
对于采用弹簧压缩装置的应力锥的压力调整应按图纸规定要求,用力矩扳手固紧。
第3篇 聚氯乙烯树脂生产中乙炔工段防火防爆安全技术措施探讨
桶装或袋装电石经破碎机破碎后,由皮带机送到电石大贮斗内,再从电石大贮斗放入加料斗,经计量后借电石吊斗、电动葫芦、电磁振荡器连续加入乙炔发生器。电石水解产生的粗乙炔气由乙炔发生器顶部逸出,经喷淋预冷器、正水封进入冷却塔和乙炔气柜。来自发生器经冷却后的乙炔气,进入乙炔压缩机加压,然后经清净塔除去粗乙炔气中的ph3、h2s等杂质,再经中和塔、冷凝器等除去酸和水分。精制后的精乙炔气送往氯乙烯合成转化工序.
2乙炔易燃易爆性分析
乙炔工段主要存在易燃易爆物质乙炔。
乙炔的沸点为-83.6℃,凝固点是-85℃,在常温常压下是比空气略轻、溶于水和有机溶剂的无色可燃气体;工业生产的乙炔含有磷、硫等杂质时带有刺激性臭味,性质活泼;乙炔纯度、操作压力和温度越高,越容易爆炸,在高温、高压下具有强烈的爆炸能力;乙炔爆炸极限范围很宽,在空气中为2.5%~82%(其中7%~13%最易爆炸,最适宜的混合比为13%),在纯氧中为2.3%~93% (其中30%最易爆炸),属于快速爆炸混合物,其爆炸延滞时间只有0.017s,一旦遇到火源,即可发生火灾爆炸事故。
乙炔与游离氯易反应生成氯乙炔,此物质很不稳定,遇 光、振动等就能发生爆炸。乙炔还可以和铜、银发生反应生 成不稳定具有爆炸性的乙炔铜、乙炔银。
3乙炔防火防爆安全技术措施
乙炔工段是具有爆炸危险的生产工艺过程,生产装置、设备应具有承受超压性能和完善的生产工艺控制手段,应设置可靠的温度、压力、流量、液面等工艺参数的控制仪表和控制系统,对工艺参数控制要求严格的工艺应设置双系列控制仪表和控制系统;还应设置必要的超温、超压报警、监视、泄压、抑制爆炸装置和防止高低压窜气(液)、紧急安全排放装置
(1)乙炔生产厂房应为一、二级耐火建筑,建筑物采用钢筋混凝土框架结构。储存电石的仓库、粉碎电石岗位的建筑应按照《建筑设计防火规范》的有关规定设计采取必要的防爆、泄压措施;厂房最好为单层结构,若必须设计成多层时,乙炔发生器应放在顶层;厂房地面采用不发火地面,门窗向外开启;生产厂房、乙炔发生器操作台均应设置安全出口。
(2)电石中的含硫、磷量和发气量应经检测符合要求方可投入生产。
(3)有电石粉尘产生的房间,墙壁、地面均应光滑平整,便于清扫;粉碎室应安装吸尘设备,除去电石粉尘。
(4)贮存电石时,严防电石被雨水淋湿、受潮,要轻拿轻放;电石库、电石碎间、中间电石库,应设在干燥地点,这些部位的通风帽、门窗孔洞应设防雨水侵入设施;开启装电石的桶或袋时,操作者应使用不发生火花的工具,勿使用铁、铜、银制工具。
(5)乙炔爆炸危险的房间之间应设置隔离墙、隔离门,隔离墙耐火极限应不低于1.5h,隔离门耐火极限应不低于0.6h;无爆炸危险的房间不应与有爆炸危险的房间直接相通,应用耐火极限不低于3.5h的防火墙隔开。
(6)有爆炸危险地点的电气设备需防爆,如电动葫芦、乙炔压缩机等。
(7)投料时,加料量应严格控制,切忌加料过多过快,在贮料斗中加装电石前,加料斗顶盖可能撞击打出火花的部位均应用铝皮、橡胶皮覆盖。若贮料斗活门被大块电石卡住,应用木锤轻轻敲打使其松脱。经常检查活门是否严密,使活门与底座接触面具有一定的弹性,保持良好的密封状态。电石粒度也要严格控制,防止卡住活门,电石粒度一般控制在50mm左右。加料贮斗用氮气保压,采用连续通氮的方式并保持贮斗的干燥,避免乙炔气生成和聚集。
(8)乙炔发生器上应安装液位计、温度计、压力表、安全阀或防爆片等安全设施;对乙炔发生器及其附属设备应选用有关部门鉴定的合格产品,并在开车前仔细检查其中的压力计、液位计、阀门等是否灵敏好用,检查电气设备及自动联锁装置是否完好,检查置换用惰性气体的含氧量是否小于3%,全部达到指标后方可开车。当乙炔发生器停用或乙炔输送管道内温度低于16℃时,应用热水冲洗以消除水合晶体堵塞管道现象以及消除静电。定期对乙炔发生器检修时,先用氮气进行置换,再用水冲洗,勿将照明灯具拉入发生器内。
(9)乙炔气柜上应安装泄压装置、蔽位指示装置;气柜进口管道应安装阻火器或水封等安全设施,防止发生事故时火源从管道窜人气柜。气柜主要起缓冲作用,应将气柜高度与发生器的电磁振荡器进行联锁自控,以提高气柜的缓冲效率,保证加料系统出现故障时,能在短时间内保证清净系统、乃至氯乙烯合成系统的连续操作。
(10)水环泵出口、冷凝器出口应安装泄压装置,当发生事故时压力从泄压装置排出,以便最大限度地保护设备。
(11)要用氮气或惰性气体等保护气体置换的设备和管道,排放气中含氧必须小于3%;需要冷却的部位,应保证足够的冷却水量;为防止有爆炸性的乙炔铜、乙炔汞、乙炔银等生成,凡与乙炔接触的设备、管道、管件、阀门、仪表等严禁使用铜、银(包括铜焊、银焊)、汞等材质,万不得已时,应将含铜、汞、银量控制在安全范围之内。
(12)乙炔发生系统应设置正水封、逆水封和安全水封。正水封装在乙炔发生器通往乙炔贮罐或生产车间的管道上,正水封起到单向止逆阀的作用,当发生系统和清净系统有一部分发生事故时,起到安全隔离的效果。逆水封应装在从乙炔气柜返回乙炔发生器的管道上,正常生产时,逆水封不起作用,当发生器故障设备内压力低时,气柜内乙炔气可经逆水封自动进入发生器,以保持其正压,防止系统产生负压而抽入空气,形成爆炸性混合气体。安全水封应装在乙炔发生器放空管上,起到安全阀和溢流管的作用,防止乙炔发生器压力过高发生爆炸。
(13)严格控制排渣速度,防止形成负压;渣坑应设在室外通风良好的地方,四周10m内禁止火源。排渣堵塞时可用水冲洗疏通,切忌用金属工具通凿,以防撞击或摩擦引起火花
(14)选用次氯酸钠为清净剂净化乙炔时,应将次氯酸钠中有效氯含量控制在0.1%以下,以防止乙炔与游离氯反应生成氯乙炔引起爆炸。
(15)次氯酸钠配置桶液面应控制在一定高度,以防止清净塔乙炔气经管道倒窜入配置桶,与氯气反应引起文丘里反应器爆炸。
(16)乙炔经压缩机压缩后,才可装贮罐和输送,压缩机出口温度不超过35℃,最高压力不超过2.5mpa;压缩机应安装在一、二级耐火等级的建筑里,且单独建造。
(17)乙炔在管道中的流速过高会产生静电,选择合适的管径使流速小于8m/s;同时输送乙炔的管道设止回阀,管道和设备应有完善的静电接地设施,防静电接地线单独接地,接地电阻不大于100 。
(18)乙炔发生器内反应温度控制在85±5℃;压力不允许超过147kpa,尽可能控制在较低压力下操作,但压力太低时,在压缩机入口有形成负压抽人空气的危险,一般压力控制在80~133kpa。液位的控制则以保证电石加料管插入液面下,以防止乙炔气大量逸人加料贮斗。
(19)从乙炔发生器出来的粗乙炔气中含有ph3,ph3气空气接触会自燃,从而引起乙炔的爆炸。因此,在工艺上设置安全装置清净塔除去ph3。
(20)发生器、乙炔压缩机等设备,必须采用适用于乙炔的防爆型电气设备或仪表;当受条件限制,需采用不适用于乙炔的或非防爆型电气设备或仪表时,应将其布置在单独的电气设备间内或室外。
(21)乙炔厂房属第ⅱ防雷建筑物,防雷接地线要单独接地,接地电阻不大于10ω。
(22)乙炔气柜区必须装有防雷装置,且在30m范围内电气设备应按i级区域场所防爆要求设计,还应设有消防车道和消防设施。
(23)所有的乙炔放空管应设有阻火器,有向管道内加氮气或惰性气体等保护气体的措施。
(24)在乙炔生产区域没有手动火灾报警按钮,最大行走距离不超过60m;在装置区域内,按规定设置便携式干粉灭火器。
(25)乙炔生产各个操作岗位的安全疏散通道应保持畅通无阻,并备有事故照明灯。
(26)氮气或惰性气体保护系统必须保持有效,且与工艺系统接口处应装有止逆阀。
(27)系统开车前,应用氮气或惰性气体等保护气体吹扫整个系统,使全系统内的氧含量低于3%。
4结束语
本文针对聚氯乙烯树脂生产乙炔工段,依据国家法律法规、国家或行业标准、规范,结合笔者的工作经验并进行研究,提出乙炔防火防爆安全技术措施。只要把这些安全技术措施落实到从系统设计、施工到投产使用的整个系统中,就可大大地提高系统的安全性,提高生产系统的生产效率和安全度,有效地防止事故的发生。
39位用户关注