管理者范文网 > 安全管理 > 安全操作规程 > 安全规程
栏目

安全设计规程4篇

更新时间:2024-05-16

安全设计规程

内容

一、安全设计的目标与原则

1. 目标:确保产品或系统的安全性,预防潜在危害,保护用户、操作者及环境不受伤害。

2. 原则:预防优于纠正,设计阶段考虑安全性,集成安全功能而非事后补救。

二、设计阶段的安全考量

1. 风险评估:识别可能的风险源,进行风险分析,确定其概率和影响。

2. 安全功能设计:根据风险评估结果,设计并实施必要的安全功能。

3. 用户交互:考虑用户行为,设计直观、易于理解的界面,减少误操作。

三、材料与工艺选择

1. 材料选择:选用符合安全标准的材料,考虑耐久性、耐腐蚀性等因素。

2. 工艺优化:采用安全的制造工艺,避免产生有害物质或潜在危险。

四、测试与验证

1. 安全测试:在设计过程中进行安全测试,确保产品符合安全标准。

2. 性能验证:通过模拟实际使用场景的测试,验证产品的安全性能。

五、文档与记录

1. 设计文档:详细记录设计过程,包括风险评估、安全功能设计等。

2. 记录管理:妥善保存测试报告、更改记录,以便追踪和审计。

六、持续改进

1. 反馈机制:建立用户反馈渠道,及时收集安全问题。

2. 审查与改进:定期审查安全设计,根据反馈和新知识进行改进。

标准

1. iso 12100:2010 - 机械安全 - 设计的一般原则 - 风险评估和风险减小

2. iec 61508 - 电气/电子/可编程电子安全相关系统的功能安全

3. en 13849 - 机械安全 - 控制系统的安全性 - 要求和评估

4. osha 29 cfr 1910.132 - 个人防护装备

考试题及答案

1. 问题:安全设计的主要目标是什么? 答案:确保产品或系统的安全性,预防潜在危害,保护用户、操作者及环境不受伤害。

2. 问题:在选择材料时应考虑哪些因素? 答案:应考虑材料的耐久性、耐腐蚀性,以及是否符合相关的安全标准。

3. 问题:如何验证产品的安全性能? 答案:通过模拟实际使用场景的测试,验证产品的安全性能,并确保其符合安全标准。

4. 问题:安全设计过程中的一个重要环节是什么? 答案:进行风险评估,识别可能的风险源,分析其概率和影响,然后设计并实施必要的安全功能。

5. 问题:如何确保安全设计的持续改进? 答案:建立用户反馈渠道,定期审查安全设计,根据反馈和新知识进行改进。

安全设计规程范文

第1篇 硫酸库安全设计规程

4.2.1 硫酸储罐的安全设施安全设施:

(1)硫酸灌区最重要的安全设施是足够容积的围堰。根据《石油化工企业设计防火规范2008版》规定,硫酸罐区围堰内的有效容积不小于罐区中最大单台储罐泄露的体积,一定是有效容积,围堰高度最高不超过1.6米,一般在1.2米左右,内侧防腐处理。

(2)硫酸储罐一般没要求倒罐,但要规定装填系数。我公司现行暂定充装系数为全容积的80%。

(3)酸罐基础及地坪防腐。可用耐酸花岗岩或者耐酸瓷板进行防腐,环氧胶泥铺底、勾缝。我公司采用耐酸花岗岩进行地坪防腐处理,砖大性齐、美观,加上一定坡度,保证竹区内良好散水性,防止雨水或者泄露的硫酸洼地积聚。

(4)酸罐保温问题。有此专家认为在北力一气温可能降得很低,会出现硫酸盐结晶堵塞管道、阀门,在大罐的出酸阀及竹道上保温可能有必要。在冬季平均气温不低于-6℃的地区,没有进行保温的必要,相反,酸罐保温后,保温表面出现的龟裂纹会导致雨水渗入岩棉,而逐渐造成间隙腐蚀,影响酸罐使用寿命。

(5)事故废酸收容池。如果酸罐出现泄漏或者酸罐检修,需要将废酸收容,在酸罐区围堰外挖地卜收容池,收容池采用棍泥土制做,用瓷砖防腐即可。收容后废酸采用石灰粉中和排放。

(6)个体防护装置、消防装置配备。卸酸站台和酸罐区围墙外在作业较密集处应设置个体防护装置,如洗眼器、喷淋头,用于硫酸溅伤事故处置;在合适位置应设置消防、高压雾化水装置,用于灭火和酸罐壁降温。

4.2.2硫酸罐区运行安全管理措施

(1)浓硫酸储罐及硫酸管线出现泄漏的处理:

应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土、干燥石灰或苏打灰棍合。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容:用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

(2)98%硫酸储罐的清洗置换:

打开罐底人孔,人进去后在罐底(注意通风置换,防止窒息或动火

爆炸)找个最低点把剩余酸放掉。用碱性水溶液中和,再用清水冲洗。

(3)浓硫酸储罐的维修

主要视漏酸部位及漏酸处罐体钢板腐蚀(或焊缝)情况而定。补焊后要进行煤油渗透试验检查补焊效果。绝对不能在罐内部直接焊接,很容易发生爆炸,内部可能会有残存的氢气,这种情况发生过很多事故,内部焊接前,必须通风,再做动火分析,合格后动火,外包焊接还是可以的,就是焊缝要处理好。

(4)检验与安全检修

为保证储罐的安全运行,每2年至少使用测厚仪监测一次储罐的壁厚,每4年进行一次内部检测或者底部焊缝射线探伤。由于稀硫酸与低碳钢反应会生成易燃易爆的氢气,因此在进行储罐检修前必须确认储罐以充分置换、排空,条件许可时应做可爆氢动火分析或使用氢气测报仪进行检测,井清除周边所有潜在的火源。当附近发生火灾时,应用水喷在可燃物上,井用高压雾化水或者泡沫来冷却竹壁,防止罐壁受热而产生应力变化造成危害,绝对禁止将水直接加入酸罐内。罐顶放空装置会因长时间使用积聚硫酸铁粉末而导致装置堵塞,在酸罐进料时形成正压喷出而造成危险,应做定期检查,及时处理保证卸酸安全。

为了保证硫酸储罐的安全运行,公司从酸罐区的设计阶段就应该全面考虑,防患于未然。合理的设计可以防止和减轻各种潜在的腐蚀及危害,正确的选材是以最低的经济支出保证储罐安全运行的一种手段在此基础上,综合采用多种措施加强管理手段,可以有效的防止事故发生延长酸罐使用寿命。

第2篇 住宅电气线路消防安全设计规程

随着社会的发展,人们生活水平及要求的不断提高,自90年代后期起,我国城乡住宅由实用型转向小康型,实用型住宅每户的建筑面积为60~80㎡,每户用电负荷为4~6kw;小康型住宅每户建筑面积为loo㎡,每户用电负荷为6~8kw。我国城乡住宅正在向大面积、超高层、多功能、综合型、多用途的方向发展,同时,由于这些住宅具有电器多、现代化塑料材料多、布线密集等特点,一旦发生火灾后果不堪设想。

目前,民用住宅在消防电气设计方面还十分落后,一旦发生火灾,损失巨大。用户用电要求的提高从客观上给小康住宅电气设计提出了更高的标准。住宅电气设计水平的高低,反映出一个城市的现代化和人民生活的水平。因此,要求电气设计时应考虑到家用电器的合理布置、整体效果;居住环境的舒适性和安全性及以人为本的消防安全设计思想。

1民用住宅配电系统

住宅的用电标准是通过配电系统来实现的。在系统能够提供足够的用电量的条件下,末端系统设计不合理也会影响住户的使用。

这是目前设计住宅的最低标准,具体工程中往往根据每户面积、用户需求和设计标准等适当增加出线回路。我们需要对住户的使用要求进行具体分析。一般来说,照明支路是能够满足的,问题常常出现在插座支路和空调支路上。仅以超过loow的家用电器计算,插座支路上就有电视、音响、冰箱、电烤箱、微波炉、电饭煲、洗衣机、电热水器、电熨斗、电吹风机和计算机等电器设备。如果拥有上述家电较多,又可能同时使用多台设备,就可能出现过负荷跳闸。空调支路在装有两台分体或窗式空调器时一般没有问题,但空调器台数再增多或包括大容量空调(如柜机)时,也可能出现过负荷跳闸断电。因此,在实际工程中往往要增加出线回路,如在大于30㎡的起居室设专用空调插座、单套住宅面积较大时增加出线回路、厨房单设插座支路并为浴室热水器设专用插座等。需要说明的是,配电回路偶尔发生过负荷跳闸(如在投入大负荷时)并不是严重问题,要核算一下是否超负荷,过负荷时断路器跳闸是电路保护的正常反应,如果通过错开设备用电时间能解决,就是可以接受的。

如果末端配电系统不能满足使用需要,那么在一定条件下可通过改造来解决。办法是增加配电箱出线回路或加大出线回路断路器整定值并加大导线截面。当电表箱集中设于公共区域、配电箱设于户内时改造容易实现;当住户所有支路都是从设于公共区域的配电箱引来时,改造就会很困难。因为,电表箱是由供电部门和物业管理公司来管理的,为了防窃电和管理的需要,一般严禁住户改动。土建的条件也十分重要,室内配电箱设于砼墙还是砖墙,能否有条件加敷配电暗线,原有配电暗管内导线是否能抽出(换线)等都需要现场勘察后才能确定。另外,住宅的产权、物业管理部门的许可也是必不可少的。

2家庭电气设计原则

家庭电气设计是在装潢设计(这里是指家具、电器设备的布局以及房顶的设计)完成后再进行的。由于每个家庭的装潢设计各有千秋,家用电器的配置也不尽相同,因此本文仅对一些电气设计原则进行阐述。

2.1照明、插座回路必须分开设置

把照明与插座回路分开的好处是:如果插座回路的电气设备发生故障,仅此回路的电源中断,不会影响照明回路的工作,从而便于对故障回路进行检修;反之,若照明回路出现短路故障,此时就可利用插座回路的电源,接上台灯进行检修。

2.2照明线路应分成几个回路

这样做是因为一旦某一回路的照明灯出现短路故障,也不会影响到其它回路的照明,使整个家庭处于黑暗中。

2.3对空调、电热水器等大容量电器设备宜一个设备设置一个回路

如果以上设备合用一个回路,当它们同时使用时,导线易发热,即使不超过导线允许的工作温度,也会降低导线绝缘的寿命。此外,加大导线的截面也可大大降低电能在导线上的损耗。

2.4卫生间内的电气设计尤为重要

卫生间分两类:干湿分开的卫生间和干湿合在一起的卫生间。湿式卫生间内有浴缸和坐便器;干式卫生问放置洗脸盆和洗衣机。放置浴缸的卫生间是潮湿环境,用湿手操作电源开关有一定的危险性,因此电源开关可装在湿式卫生间外面的门旁墙上。

若装在卫生间内,应采用拉线开关或防水开关。

在卫生间内配置电热淋浴器,要配备专用的插座。镜前灯下还必须设置电须刀、电吹风和烘手器等插座。浴霸的电源线应直接从住户配电箱内用3根2.5m㎡的铜芯导线引来。浴霸用一只开关控制普通照明,用一只或两只开关控制红外灯。浴室的配电回路应具有漏电保护,灯具金属外壳都应该接地。

2.5接地措施

(1)不能用自来水管作为接地线。新建住宅楼都配置了可靠的接地线,而老式住宅往往无接地线,不少老式住宅的用户就以自来水管作为接地线。这样不仅易使电气线路引发火灾危险,而且会导致人因触及带电的自来水龙头而遭电击身亡;

(2)为确保安全,浴室应采用等电位联结。即把浴室内所有金属物体(包括金属毛巾架、铸铁浴缸、自来水管等)用接地线连成一体,且可靠接地。插座及浴室灯具回路必须采取接地保护措施。浴室插座除采用隔离变压器供电(如电须刀插座)可以不要接地外,其它插座则必须用三极插座,浴室灯具的金属外壳必须接地。因为,浴室属于潮湿环境,易引发电气线路故障,增加火灾危险性。同时,人触及50v以下的安全电压,也有遭电击的可能;

(3)电气设计前,必须先了解用户电源来自何处,以及该电源的接地制式。接地保护措施应与电源系统一致;

(4)每个回路应设置单独的接地线。有些人认为接地线中的电流很小,几个回路合用一根接地线可节约装潢费用。这种观点是错误的。因为在正常工作时,接地线中的电流的确很小,但在发生短路故障时,接地线中流过的电流会大大超过相线正常工作时的电流;另外,从可靠性角度考虑,一个回路一根接地线更可靠;

(5)即使安装漏电保护设施,也应有接地保护。任何一种电气产品,都有出现故障的可能,漏电开关也有出现故障的可能。有了接地保护,当漏电开关出现故障时,接地保护仍能起到保护作用。但漏电开关的输出中性线不能与地面接触,否则开关将无法合闸;

(6)有了良好的接地装置,每户仍应配置漏电开关。当发生电气设备外壳带电时,接地装置的接地电阻再小,在故障未解除前,设备外壳对地电位也是存在的,也具有火灾危险。若采用漏电开关,只要漏电电流大于30ma,在0.1s时间内就可使电源断开。人体随时有接触插座所接的电气设备的可能,因此插座要有漏电保护。挂壁式空调因人手难以碰到可不带漏电保护。

2.6用电容量要和设计能力相符

每户用电容量要和设计能力相符,不要盲目装接大功率电气设备。为此,每户居民在电气装潢前,应初步估计室内负荷总容量,避免超过该户的设计负荷。具体数字可向当地物业管理部门咨询。

2.7选择带保护板的插座

电气安全设计是重点,每个家庭成员天天要接触家用电气设备,家中既有不懂事的小孩,也有略懂电气知识而不懂电气安全知识的大人,为了确保用电安全,必须重视电气安全设计。对小孩能触及的插座,应选择带保护板的插座,避免小孩把金属物体塞进插座内引发触电及火灾危险。

2.8不要选用“三无”产品

因使用劣质的电加热器淋浴而发生电击死亡的事故,媒体时有报道。因此,家庭装潢时不要选用“三无”产品,尤其是插座,“三无”产品充斥市场,应注意鉴别。不要盲目追求泊来品,建议购买国产的名牌产品。

3电线保护管

电线不准直接敷设在墙内,必须用电线保护管加以保护。非常遗憾的是《住宅设计规范》(gb50096-1999)未对电线保护管的种类提出要求。而《电气装置安装工程lkv及以下配线工程施工及验收规范》(gb50258-1996)有如下规定:潮湿场所和直埋于地下的电线保护管,应采用厚壁钢管或防液型可挠金属电线保护管;干燥场所的电线保护管宜用薄壁钢管或可挠金属电线保护管;塑料管不应敷设在高温和易受机械损伤的场所,保护电线用的塑料管及其配件必须有阻燃标记和制造厂标;金属软管应敷设在不易受机械损伤的干燥场所,且不应直埋于地下或混凝土中。《住宅建筑设计标准》(dbj08-20-1998)规定:电源、电话、电视线路应采用阻燃型塑料管暗敷。

阻燃塑料管由于价格比金属管便宜、施工方便、不会生锈等优点,在家庭装潢中受到用户的欢迎。

家庭装潢时,对电线保护管应作如下有效检查:

(1)检查塑料管外壁是否有生产厂标记和阻燃标记,对无上述两种标记的保护管不能采用;

(2)用火使塑料管燃烧,塑料管撤离火源后在30s内自熄的为阻燃测试合格;

(3)弯曲时,管内应穿人专用弹簧。试验时,把管子弯成90°,弯曲半径为3倍管径弯曲后外观应光滑;

(4)用榔头敲击至保护管变形,无裂缝的为冲击测试合格。

家庭装潢中除了采用阻燃型塑料管暗敷保护电线外,也可用金属电线保护管。如有的住宅楼电源线采用阻燃塑料管保护,而电话、有线电视采用镀锌金属薄壁管(可起屏蔽作用)。电话和有线电视传输线的金属保护管不必设置跨接线,这是因为丝口连接或套筒连接的镀锌管已能达到屏蔽要求。

钢管不应有折扁和裂缝现象出现,管内应无毛刺,钢管外径及壁厚应符合相关的国家标准,若钢管绞丝时出现烂牙或钢管脆断现象,表明钢管质量不符合要求。

吊顶内接线盒至灯具的导线应用软管保护,软管有塑料软管、金属软管、包塑金属软管和普利卡软管。家庭装潢中一般采用塑料软管或包塑金属软管,若采用不包塑金属软管,则软管要接地。普利卡管既具有金属管的强度,又具有软管的可挠性,因此在高级住宅中得到采用.

第3篇 铸造工艺安全设计规程

铸造工艺是指应用铸造有关理论和系统知识生产铸件的技术和方法,包括对造型材料的选择、造型、制芯、金属熔炼、浇注和凝固控制等方面的控制和管理。铸造工艺的安全性对铸件产品、项目的生产管理,保证生产进度以及铸造企业的的生存都起着至关重要的作用。铸件工艺的安全性低,则铸造生产过程中产生的各种问题增多,生产成本加大,利润降低,企业的竞争力差。特别是在技术发展日新月异的今天,企业对产品的质量不断提出了新的要求,为了适应市场需求,满足客户需要,提高企业的竞争能力,降低生产成本,必须对铸造工艺的安全性进行评估。

1. 铸造工艺的安全性

铸造工艺的安全性主要分为铸造工艺本质的安全性和铸造工艺设计的安全性两个方面。

铸造工艺的本质安全性是指在铸件的生产过程中,采用的物料和操作条件能够保障铸造缺陷及铸件报废的发生频率被控制在合理的范围内。铸造工艺设计的安全性是指通过工艺设计,将铸件产生缺陷的发生率及铸件产生报废比例限制在可以接受的合理的水平上。

在一般的铸造工艺工程中,工艺过程容易实现工艺本质的安全性,但是当采购的物料不达标,退让使用时,或者工艺的操作条件偏离设计值时也会造成铸件缺陷及报废问题突出的局面,而在工艺过程中,不容易实现的是工艺设计的安全性,即工艺的设计生产的铸件不能满足客户的需要,或者因为工艺设计不能保证铸件合格率以致铸件的生产成本过高。因此,需要采取有效的手段和措施,对工艺设计的安全性和工艺本质的安全性进行评估,提高工艺的安全性,降低铸件的发生缺陷及报废的频率,并且尽可能的将铸件生产中产生的损失降到最小。

2. 铸造工艺安全性的地位及作用

2.1工艺本质的安全性是工艺安全的基础

工艺本质的安全性主要取决于两个方面,一方面指的是工厂采购的生产原材料,即熔炼金属用的材料及造型材料的品质,另一方面指的是工厂生产的操作条件,包括工厂生产的冶炼条件,造型条件,浇注及凝固条件等。

铸造生产中,冶炼技术是影响铸件品质非常大的因素之一,想要生产出高品质的铸件,必须明确冶炼“优生优育”的生产意识,铸件缺陷的产生往往是由于铸件的先天不足,即冶炼的金属液质量差造成的。对于冶炼工艺纯熟的生产企业,对铸件的品质提升,对缺陷的控制往往忽略了冶炼这一环节,忽略了冶炼用的劣质原材料也是造成铸件产生气孔、夹渣、裂纹等众多缺陷的罪魁祸首,这就导致了工厂工艺设计的改进不能从根源上彻底解决铸件的缺陷问题。

保证造型材料的高质量,也是保障铸件高品质的重要方面。在市场经济高度开放的今天,铸造生产常用的造型材料参差不齐,好坏掺杂。据统计,由造型材料引起的废品,占总废品率50%以上,我国目前废品率10~15%要下降到世界先进水平5%以下,造型材料承担着重要责任。铸件成本的70%与造型材料有关。优质的造型材料对提高铸件质量和效益起着决定性的作用。生产的操作条件也对铸造工艺安全性有很大的影响。生产条件

2.2工艺设计的安全性是工艺安全的核心

工艺设计的安全性主要依赖于工厂的工艺保障能力和工艺设计能力。

3. 铸造工艺安全性评估

3.1工艺本质的安全性评估

(1)对熔炼金属用原材料的评估

(2)对造型材料的评估

3.2工艺设计的安全评估

第4篇 石油化工装置安全设计规程

针对石油化工装置中存在的危险因素,从工艺路线的选择、工程设计(包括工艺系统设计、仪表及自动控制设计、设备设计、装置布置设计、管道设计、土建设计、供排水设计、通风设计、消防设计)多方面保证石油化工装置安全的设计方法和措施,强调了安全设计的重要性。

石油化工装置多以石油、天然气,煤及其产品为原料进行加工处理,以得到社会各种产品。装置的原料和产品多属可燃、易爆、有毒物质,装置必然存在着潜在的火灾、爆炸和中毒危险。

据美国化学工程师协会(aiche)1992年休斯顿工艺装置安全论坛资料报导:近30年来,烃加工业火灾的频率和火灾造成的经济损失,一直呈增长趋势。另据统计:世界石油化工业近30年100起损失超过10000×10; us$的特大事故中,装置的比例近六成。象1974年英国fliborough的卡普纶装置、1989年法国la mede炼油厂、1994年英国milford haven炼油厂的火灾爆炸事故,都是触目惊心的。

这不只是由于石油化工装置较其它设施有过程复杂、条件苛刻、制约因素多、设备集中等特点,还有社会的、经济的、管理的原因,综合如下:

(1)强调经济规模,工厂(装置)日趋大型化;

(2)减少建设用地,设备布置变得拥挤,资产密度加大;

(3)为消除瓶颈、扩能增效、节能、改善环境,在现有装置内增加设备或设施;

(4)增加生产工日,长周期运转,设备得不到及时维修和更新;

(5)人员减少,操作管理人员流动性大。此外,技术、装备、培训是否及时跟进也是原因之一。

如何做到设计安全,如何对石油化工过程潜在的各种危险进行识别,如何对偏离过程条件做出估计,并在工程建设的基础环节(设计)上采取措施,防患于末然,已为人们广泛关注。国外现在较为通行的做法是,除强调本质安全设计外,在项目设计中推行(危险性和可操作性研究)(hazard and operability study,缩略为hazop),用一系列对过程偏离研究提示,系统地、定性地去认识过程危险和潜在的后果,并采取措施。在项目管理上,推行(安全卫生执行程序)(health and safety e_ecutive 缩略为hse),对项目各阶段的安全、卫生和环保内容进行审查、确认。此外,还可以应业主要求,对项目进行安全评估。

我国石油化工装置设计,目前尚无一套完整的安全分析方法和管理体系。有关安全、卫生和环保要求,多分散在有关政府法规和各级标准规笵中,执行管理诸多不便,加之设计中很多关于安全、卫生和环保的要求,标准规笵没有或无法纳入。在项目管理上更是只重视“前期”审查,忽视“后期”实施,往往事倍功半。

如何保证装置设计安全,首先要严格、正确地执行政府法规、标准规笵(特别是强制性标准)。设计人员还该做些什么本人根据自已的学习和体会,供石油化工装置设计和生产安全的同行探讨。

1. 装置危险因素

石油化工装置类型甚多,由于技术路线、原料、产品、工艺条件的差异,存在的危险因素不尽相同,大致归纳如下:

1.1中毒危险

石油化工生产过程中,以原料、成品、半成品、中间体、反应副产物和杂质等形式存在的职业性接触毒物,工人在操作时,可经过口、鼻、皮肤进入人体生理功能和正常结构的病理改变,轻则扰乱人体的正常反应,降低人在生产中作出正确判断、采取恰当措施的能力,重则致人死亡。

1.2火灾爆炸危险

可燃气体、油气、粉尘与空气形成的混合物,当其浓度达到爆炸极限时,一旦被引燃,就会发生火灾爆炸,火灾的辐射热和爆炸产生的冲击波可能对人、设备和建筑物造成杀伤和破坏。

尤其大量可燃气体或油气泄漏形成的蒸汽云爆炸,往往是毁灭性的。如2001年抚顺石化公司的乙烯空分装置的爆炸、2000年北京燕山石化的高压聚乙烯装置的爆炸、1967年大庆石化公司的高压加氢装置的氢气的爆炸这样的例子还有很多,损失是十分惨重的。

1.3反应性危险

化学反应过程分吸热和放热两类。通常,放热反应较吸热反应更具危险性,特别是使用强氧化剂的氧化反应;有机分子上引入卤原子的卤化反应;用硝基取代化合物中氢原子的硝化反应;一旦失控可能产生严重后果。

此外,石油化工过程中使用的某些原材料具有很强的反应活性,稍有不慎同样会对安全造成威协。

1. 4负压操作

负压操作易使空气和湿气进入系统,或是形成爆炸性气体混合物,或是空气中的氧和水蒸汽引发对氧、水敏感物料的危险反应。

如炼油的常减压装置中的减压塔系统。

1.5高温操作

可燃液体操作温度超过其闪点或沸点,一旦泄漏会形成爆炸性油气蒸汽云;可燃液体操作温度等于或超过其自燃点,一旦泄漏即能自燃着火或成为引燃源;高温表面也是一个引燃源,可燃液体溅落其上可能引起火灾。

如茂名焦化装置2001年由于用错管线材料,高温渣油冲出形成大火灾,发生重大人身伤亡事故。

1.6 低温操作

没有按低温条件设计,由于低温介质的窜入,而引起设备和管道的低温脆性破坏。

如空分的低温设备的损坏,大化肥渣油气化流程的低温甲醇洗-195℃的低温脆性断裂。

1.7 腐蚀

腐蚀是导致设备和管道破坏引发火灾的常见因素。材料的抗腐蚀性能的重要性,在材料优化性能方面,仅次于材料的机械性能,其耐蚀性多出于经验和试验,无标准可循(中石化加工高硫油的装置选材有现行标准)。加之腐蚀类型的多样性和千变万化的环境条件影响又给腐蚀危险增加了不可预见性。

如:天津石化的油鑵着火,高温硫腐蚀、低温硫的腐蚀等。

1.8泄漏

泄漏是设备管道内危险介质释放至大气的重要途径。设备管道静密封和动密封失效,尤其温度压力周期变化、渗透性腐蚀性介质条件更易引起密封破坏。

设备管道上的薄弱环节,如波纹管膨胀节、玻璃液位计、动设备的动密封的失效等,一旦损坏会引发严重的事故。

镇海炼化公司的加氢装置的机械密封泄漏引发的重大火灾。

1996年加氢裂化装置的高温高压螺纹锁紧环的管线泄漏的事故等。

1.9 明火源

一个0.5mm长的电弧或火花就能将氢气引燃。装置明火加热设备(加热炉),高温表面以及可能出现的电弧、静电火花、撞击磨擦火花、烟囱飞火能量都足以引燃爆炸性混合物。

如镇海炼化公司2001年的新电站开工过程中汽轮机厂房大火。

2.工艺路线选择的安全考虑

工艺方法安全是装置设计安全的基础,在项目立项和可行性研究阶段,应充分注意工艺路线的安全考虑。

2.1尽量选用危险性小的物料

为获得某种目的产品,其原料或辅助材料并非都是唯一的。在有条件时,应优先采用没有危险或危险性小的物料。

2.2尽量缓和过程条件苛刻度

过程条件的苛刻度也不是不可以改变的。比如,采用催化剂或更好的催化剂,采用稀释、采用气相进料代替液相进料,以缓和反应的剧烈程度。

2.3 删繁就简避开干扰及本质安全

过程事故几率和影响因素有关,参数越多干扰越大。对一台设备完成多种功能的情况,能否采用多台设备,分别完成一个功能,以增加生产可靠性。提高设备、自控、电气的可靠性及本质安全程度。

2.4尽量减少危险介质藏量

危险介质藏量越大,事故时的损失和影响范围越大。如用膜式蒸馏代替蒸馏塔、用連续反应代替间歇反应、用闪蒸干燥代替盘式干燥塔、用离心抽提代替抽提塔等。

2.5减少生产废料

过程用原料、助剂、溶剂、载体、催化剂等是否必要,是否可减少;是否可回收循环使用;废料是否能综合利用,进行无害化处理,减少生产废料,做到物尽其用,减少对环境的污染。

3.工程设计的安全

工艺系统设计

工艺系统设计安全的任务是对危险物料和生产全过程进行有效控制。

3.1 .1物料危险性的描述

物料危险性通常可以用物料安全数据表进行描述,主要内容如下:一般火灾危险特性:闪点、引燃温度、爆炸极限、相对密度、沸点、熔点、水溶性。火灾危险性分类(见gb50160/gbj16)

对健康的危害性:工作场所有害物质最高允许浓度(见tj36),急性毒性(lc50或ld50)及发病状况、慢性中毒患病状况及后果、致癌性。毒物危害程度分级(见gb5044)。

反应性危险:环境条件下的稳定性、与水反应的剧烈程度、对热或机械冲击的敏感性。

反应性危险等级(参考nppa704)

储运要求。

事故扑救方法、应急措施。

3.1.2过程条件

正常生产过程的实质是各工艺参数的相对平衡。任一参数超范围的变化,平衡就被打破,可能导致事故。如何对过程条件进行控制和调节,一旦失控如何紧急处置以减少和避免损失。

各种反应,包括主反应、副反应,以及可能发生的有害反应、防止有害反应的发生。采用优化软件对生产过程进行控制和调节。

3.1.3组合操作单元间衔接

石油化工装置实际是若干工艺操作单元的组合。如何实现单元间的安全衔接,避免相互干扰;某单元处理事故或故障时,如何进行隔离,其它单元如何进行维持,如何平稳停车。联合装置是若干原概念装置的组合,资产密度相对加大,尤其要在工艺系统设计上处理好衔接。

3.1.4密封和密封系统

连续散发可燃、有毒气体、粉尘或酸雾的生产系统,应设计成密闭的,并设置除雾、除尘或吸收设施。

低沸点可燃液体、有毒液体或能与空气中的氧气、水发生氧化、分解、自聚反应或变质时,应采用惰性气体密封,应有防腐的工艺措施。

3.1.5减少危险介质进入火场

在滿足生产平稳前提下,尽量缩短物料在设备内的停留时间,选用存液量少的分馏设备。对大型设备底部、大排量泵、高温(≥闪点,≥自燃点)泵入口、排量大于8m;/h液化烃泵入口、液化烃鑵出口,均应考虑事故隔离阀,事故时紧急切断,以减少事故外泄量。

气体火灾的最好扑救方法是切断气源。因此,气体加工装置边界可燃气体管应设事故隔离阀。

3.1.6设备的超压保护

gb150和(压力容器安全技术监规程)都要求压力容器设超压保护;正排量泵及有超压保护要求的设备均应有安全泄压设施。

介质腐蚀、结焦、凝堵使安全阀失效时,应考虑安全阀爆破片组合使用,或设蒸气掩护、蒸汽(或电)伴热。

对有突然超压的设备,受热压力急剧升高的设备,还应设自动泄压或导爆筒、爆破片组合设施。

3.1.7压力泄放与放空

可燃介质安全阀泄压应进入火炬系统,由于泄放物夹带液体,装置应设分液罐;放火炬总管应能处理任何单个事故最大排放量。石化装置的放空火炬排放中事故。

液化烃类设备和管道放空应进入火炬系统。

毒性、腐蚀性介质泄放应进行无害化处理。

设备和管道排净应密闭收集。

3.1.8 吹扫和置换

开停工装置内设备和管道的吹扫和置换为安全开停工及检修创造条件。

吹扫不净,不完善的吹扫系统,不合要求的吹扫介质会为火灾创造条件。

固定吹扫系统应有防止危险介质反串的措施。

3.1.9 与系统的隔离

进出装置的危险物料均应在边界处设切断阀,并在装置侧装“8”字盲板,防止装置火灾或停工检修时相互影响。

处理可燃、有毒介质的设备,在装置运行中需要切断进行检修清理时,应设双阀或阀加盲板。

3.1.10 公用工程供应

供水中断时,冷却系统应能维持正常冷却10min以上。其它象燃料、仪表用风应考虑事故供应源或事故储备量。

3.1.11 非常工况处理

装置开停工、事故停车极易发生火灾等事故。工艺系统不只提供正常操作程序,还应提出开、停工程序和停水、停电等情况下停车步骤,保证生产全过程都是有序的。如石化大型装置的事故预案。

3.2 仪表及自动控制设计

仪表是操作员的眼睛,自控系统是装置调节控制的中枢。

3.2.1 动力系统

应有事故电源和气源,以保证有较充裕的时间对事故进行处理。

3.2.2 仪表和控制器选型

应采用故障安全型,确保故障时生产系统趋向安全。

自动停车后的仪表回路,应避免未经确认复位的情况下,自动回到正常运行状态。

避免选用可能引起误判的多功能仪表。

3.2.3 联锁和停车系统

重要的操作环节,应设报警、联锁和紧急停车系统。(esd)

紧急停车可能给生产带来重要影响时,讯号系统应设3取2的表决系统。

控制系统故障可能引起重大事故时,应设n:1甚至1:1 冗余控制系统。

生产运行中,仪表及停车回路应能检测。

3.2.4 现场仪表

爆炸危险区内的仪表、分析仪表、控制器均选用相应防爆结构或正压通风结构。

3.2.5 有害气体深度监测

散发有害气体或蒸汽的场合,应设置监测报警设施。

3.2.6 仪表线缆

火灾爆炸危险区内仪表线缆应采用非燃料材料型或阻燃型。

3.3 设备设计

工艺设备是实现工艺过程的主体,所有单个操作过程都通过特定设备来完成,因此,设备的可靠性对装置安全生产至关重要。

设备设计的主要方面包括制造材料、机械设计、制造工艺和过程控制系统。

3.3.1 材料选用

应熟知工艺过程、外部环境、故障模式、材料加工性能。

腐蚀是导致设备破坏和火灾的重要因素,应合理选用耐蚀材料和腐蚀裕量。

3.3.2 机械设计

应能满足苛刻温度压力条件下对设备产生的应力要求。特别注意容器上的动力装置产生的振动荷载和由于温度压力的周期性改变产生的交变荷载。高温高压热壁反应器的应力分折。大型往复压缩机的管道采用(api618。3.3)节规范压力脉动声学摸似计算及分折、采用故障诊断技术等。

3.3.3设备制造

设计中最重要的是对设备材料质量控制程序和制造过程的质量程序作出判断,证实制造符合设计要求。

设计中应注意下列安全问题。

(1)压力容器

应严格执行《压力容器安全技术监察规程》,设置容器清洗通风设施;设置防冲蚀和防静电设施;内件应防止积液;容器内应避免物流死区;立式容器支承结构应设置耐火保护。

(2)转动设备

处理易燃、有毒介质的转动设备应采用双端密封或性能更好的密封;不得使用铸铁材料与能和介质(和/或润滑剂)起反应的零配件;压缩机各级入口应有分液设施;大型泵和压缩机应设置抗振动设施。采用先进的干气密封技术、浮环密封技术。

(3)明火设备

炉膛应有空气、氮气或水蒸气吹扫口;燃气炉应设常明灯;大型明火加热设备应设置火焰监测器。

3.4 电气设计

电力是装置生产的主要动力源,连续可靠的电力供给是装置安全生产的重要保证。

(1)关键性连续生产过程,应采用双电源供电;

(2)突然停电会引发爆炸、火灾、中毒和人员伤亡的关键设备,必须设置保安电源。

(3)大功率电机启动,应核算启动电流不超过供电系统允许的峰值电流或应用软启动设施。(变频技术)。

(4)爆炸危险环境电气设备的结构、分级和分组应符合gb50058。

(5)火灾危险环境架空敷设的电缆及电缆构电缆,均应采用阻燃型。

(6)建筑和设备,应有可能的防雷接地措施;可能产生静电的设备、管道应有防止静电积聚的措施。

(7)安全设施如火灾报警、事故照明、疏散照明等应设置保安电源。

3.5 装置布置设计

装置布置包括设备、建构筑物和通道布置,确保过程顺利实施,安全间距符合规范,方便操作维修和消防作业,有利人员疏散。

3.5.1 设备布置

应满足工艺对设备布置的要求(如泵灌注头、设备间位差);设备间及设备与建筑物间的防火间距应符合gb50160的规定;应避免连续引燃源(明火加热设备)和危险的释放源邻近布置;高危险设备与一般危险设备应尽量分开布置;设备应尽量采用露天或半露天布置,尽量缩小爆炸危险区域范围;除非工艺要求,设备多层布置时,应不超过三层;操作温度等于或大于介质自燃点设备上方一般不布置空冷器;对人体可能造成意外伤害的介质设备附近,应设置安全喷淋洗眼器。如甲醇装置。

3.5.2 建构筑物布置

可能散发火花和使用明火的建筑物(如控制室、变配电室、化验和维修间、办公楼)应布置在非爆炸危险区域,若在附加二区范围内,应高出室外地坪0.6m;

装置竖向处理应有利于泄漏物和消防洒物的排放,缩短其在装置区的滞留时间。如国外控制室的防爆设施。

3.5.3 通道设置

装置四周应设环形通道;装置的消防通道应贯通装置区,并有不少于两个的路口与四周道路连接;装置用道路分隔的区块,应能使消防作业不出现死角;设备联合平台和框架相邻疏散通道之间不应超过50 m。

3.6 管道设计

管道设计包括管道布置、管道器材和管道机械三部分。设计不当和错误都会给安全生产带来隐患,甚至酿成灾害。

3.6.1 管道布置

管道连接除必要的法兰连接外,应尽量采用焊接;管道上的小口径分支管应采用加强管接头与主管连接;管桥上输送液化烃、腐蚀介质的管道应布置在下层;氧气管道应避开油品管道布置。

跨越道路的危险介质管道,除净高应满足要求外,其上方不得安装阀门、法兰、波纹管;处理事故用的各种阀门,如紧急放空、事故隔离、消防蒸汽、消防竖管等,应布置在安全、明显、易于开启的地点。

机构职责机械员职责机械职责

《安全设计规程4篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关专题

相关范文

分类查询入口

一键复制