首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致。
1、极限分为一般极限,还有个数列极限(区别在于数列极发散的,是一般极限的一种)。
2、解决极限的方法如下
1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的_次方-1或者(1+_)的a次方-1等价于a_等等。全部熟记。(_趋近无穷的时候还原成无穷小)
2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提。必须是_趋近而不是n趋近。(所以面对数列极候先要转化成求_趋近情况下的极限,当然n趋近是_趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(_),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况
1)0比0无穷比无穷时候直接用
2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了
3)0的0次方1的无穷次方无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln_两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候ln_趋近于0)
3、泰勒公式(含有e的_次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e的_展开sina展开cos展开ln1+_展开对题目简化有很好帮助
4、面对无穷大比上无穷大形式的解决办法。取大头原则项除分子分母!看上去复杂处理很简单。
5、无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右求极限的方式(对付数列极限)例如知道_n与_n+1的关系,已知_n的极限存在的情况下,_n的极限与_n+1的极一样的,应为极限去掉有限项目极限值不变化。
10、两个重要极限的应用。这两个很重要!对第一个而言是_趋近0时候的sin_与_比值。第2个就如果_趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极限)
11、还有个方法,非常方便的方法。就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。
_的_次方快于_!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)。当_趋近无穷的时候他们的比值的极限一眼就能看出来了
12、换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。
14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。
15、单调有界的性质。对付递推数列时候使用证明单调性。
16、直接使用求导数的定义来求极限,(一般都是_趋近于0时候,在分子上f(_)加减某个值)加减f(_)的形式,看见了有特别注意)(当题目中告诉你f(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!)
好多大学生都以为上了大学就轻松啦,甚至以为没了数学,但是往往结果和想象的不一样,大学高等数学,就好像一个拦路虎,阻挡了去路。那么,究竟应该如何在大学中学好高数呢?这是我的大学高数的总结,看好了,绝对有用
ab={_|_属于a(没法输入数学符号,见谅);且_不属于b}叫a与b的差集;
ia=a^c叫余集或补集;
任意_属于a,y属于b的有序对(_,y)称为直积或笛卡尔积;表示:a 乘以 b={(_,y)|且_属于a,y属于b};
邻域:到点a距离小于p点的集合,记作u(a),
a称为邻域的中心,p称为邻域的半径,
u(a,p)={_| |_-a|
函数:y=f(_) df或d称为定义域,rf或f(d)称为值域,
反函数:y=f(_) ==》_=f'(y),即新的y=f(_),但是求完后要加上定义域即_属于(a,b)
三角函数,
取整函数: y=[_]即不超过_的最大整数,这是我的大学高数的总结,看好了,绝对有用
符号函数;
函数特性:
(1)若任意_属于_,有f(_)<=k,则称_有上界,k为一个上界,
(2)“有界”表示既有上界又有下界,否则称为无界,
(3)单调性,奇偶性,周期性(指最小正周期);
复合函数:
若 y=f(u),u=g(_);则称y=f[g(_)为复合函数;
初等函数:
(1)基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数,
(2)初等函数:由常数和基本初等函数并成,可用一个式子表示的函数;
好多大学生都以为上了大学就轻松啦,甚至以为没了数学,但是往往结果和想象的不一样,大学高等数学,就好像一个拦路虎,阻挡了去路。那么,究竟应该如何在大学中学好高数呢?这是我的大学高数的总结,看好了,绝对有用
ab={_|_属于a(没法输入数学符号,见谅);且_不属于b}叫a与b的差集;
ia=a^c叫余集或补集;
任意_属于a,y属于b的有序对(_,y)称为直积或笛卡尔积;表示:a 乘以 b={(_,y)|且_属于a,y属于b};
邻域:到点a距离小于p点的集合,记作u(a),
a称为邻域的中心,p称为邻域的半径,
u(a,p)={_| |_-a|
函数:y=f(_) df或d称为定义域,rf或f(d)称为值域,
反函数:y=f(_) ==》_=f'(y),即新的y=f(_),但是求完后要加上定义域即_属于(a,b)
三角函数,
取整函数: y=[_]即不超过_的最大整数,这是我的大学高数的总结,看好了,绝对有用
符号函数;
函数特性
(1)若任意_属于_,有f(_)=k,则称_有上界,k为一个上界,
(2)“有界”表示既有上界又有下界,否则称为无界,
(3)单调性,奇偶性,周期性(指最小正周期);
复合函数
若 y=f(u),u=g(_);则称y=f[g(_)为复合函数;
初等函数
(1)基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数,
(2)初等函数:由常数和基本初等函数并成,可用一个式子表示的函数;
高极限数的方法总结
假如高等数极限是棵树木得话,那么极限就是他的根,高数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎。可见这有多重要,那么小编就带大家一起获取高数的方法吧。
求高数极限的`方法总结
1、利用定义求极限。
2、利用柯西准则来求。
柯西准则:要使{_n}有极限的充要条件使任给ε>;0,存在自然数n,使得当n>;n时,对于
任意的自然数m有|_n-_m|<ε.
3、利用极限的运算性质及已知的极限来求。
如:lim(_+_^0.5)^0.5/(_+1)^0.5
=lim(_^0.5)(1+1/_^0.5)^0.5/(_^0.5)(1+1/_)^0.5
=1.
4、利用不等式即:夹挤定理。
5、利用变量替换求极限。
例如lim (_^1/m-1)/(_^1/n-1)
可令_=y^mn
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim sin_/_=1
_->;0
(2)lim (1+1/n)^n=e
n->;∞
7、利用单调有界必有极限来求。
8、利用函数连续得性质求极限。
9、用洛必达法则求,这是用得最多的。
10、用泰勒公式来求,这用得也很经常。
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的_次方-1或者(1+_)的a次方-1等价于a_等等。全部熟记(_趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是_趋近而不是n趋近!(所以面对数列极限时候先要转化成求_趋近情况下的极限,当然n趋近是_趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(_),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln_两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,ln_趋近于0)。
3、泰勒公式(含有e的_次方的时候,尤其是含有正余弦的加减的时候要特变注意!)e的_展开sina,展开cosa,展开ln1+_,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!
5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!
6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。
8、各项的拆分相加(来消掉中间的`大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右极限的方式(对付数列极限)例如知道_n与_n+1的关系,已知_n的极限存在的情况下,_n的极限与_n+1的极限时一样的,因为极限去掉有限项目极限值不变化。
10、两个重要极限的应用。这两个很重要!对第一个而言是_趋近0时候的sin_与_比值。第2个就如果_趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)
11、还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!_的_次方快于_!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!!当_趋近无穷的时候,他们的比值的极限一眼就能看出来了。
12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。
13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。
14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。
15、单调有界的性质,对付递推数列时候使用证明单调性!
16、直接使用求导数的定义来求极限,(一般都是_趋近于0时候,在分子上f(_加减某个值)加减f(_)的形式,看见了要特别注意)(当题目中告诉你f(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!
函数是表皮,函数的性质也体现在积分微分中。例如他的奇偶性质他的周期性。还有复合函数的性质:
1、奇偶性,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样(奇函数相加为0);
2、周期性也可用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;
3、复合函数之间是自变量与应变量互换的关系;
4、还有个单调性。(再求0点的时候可能用到这个性质!(可以导的函数的单调性和他的导数正负相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断点是对于间断函数而言的)间断点分为第一类和第二类剪断点。第一类是左右极限都存在的(左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点(这也说明极限即使不存在也有可能是有界的)。
首先对各个知识点做深入细致的分析,注意抓考点和重点题型,同时逐步进行一些训练,积累解题思路,这有利于知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。
导语极限问题一直是考研数学中的考察重点,很多考研党在面对题型的变化时,会觉得有些无从下手,下面给大家盘点一下求极限的16个方法,让你轻松应对各种情况。
首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致。
1、极限分为一般极限,还有个数列极限
(区别在于数列极限是发散的,是一般极限的一种)。
2、解决极限的方法如下
1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的_次方-1或者(1+_)的a次方-1等价于a_等等。全部熟记。(_趋近无穷的时候还原成无穷小)
2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提。必须是_趋近而不是n趋近。(所以面对数列极候先要转化成求_趋近情况下的极限,当然n趋近是_趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(_),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况
1)0比0无穷比无穷时候直接用
2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了
3)0的0次方,1的无穷次方,无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(_)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(_)趋近于0)
3、泰勒公式
(含有e^_的时候,尤其是含有正余旋的加减的时候要特变注意!)e^_展开,sin_展开,cos展开,ln(1+_)展开对题目简化有很好帮助
4、面对无穷大比上无穷大形式的解决办法。
取大头原则项除分子分母!看上去复杂处理很简单。
5、无穷小与有界函数的处理办法
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6、夹逼定理
(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用
(对付数列极限)(q绝对值符号要小于1)
8、各项的拆分相加
(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右求极限的方式
(对付数列极限)例如知道_n与_n+1的关系,已知_n的极限存在的情况下,_n的极限与_n+1的极限是一样的,应为极限去掉有限项目极限值不变化。
10、两个重要极限的应用。
这两个很重要!对第一个而言是_趋近0时候的sin_与_比值。第2个就如果_趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极限)
11、还有个方法,非常方便的方法。
就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。_的_次方快于_!,快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)。当_趋近无穷的时候他们的比值的极限一眼就能看出来了
12、换元法
是一种技巧,不会对某一道题目而言就只需要换元,但是换元会夹杂其中
13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。
14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。
15、单调有界的性质
对付递推数列时候使用证明单调性。
16、直接使用求导数的定义来求极限
(一般都是_趋近于0时候,在分子上f(_)加减某个值)加减f(_)的形式,看见了有特别注意)(当题目中告诉你f(0)=0时,f(0)的导数=0的时候就是暗示你一定要用导数定义!)
22位用户关注
68位用户关注
42位用户关注
63位用户关注
60位用户关注
69位用户关注