(一)解三角形:
1、正弦定理:在中,、、分别为角、、的对边,,则有
(为的外接圆的半径)
2、正弦定理的变形公式:①,,;
②,,;③;
3、三角形面积公式:.
4、余弦定理:在中,有,推论:
(二)数列:
1.数列的有关概念:
(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数n_或它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:。
2.数列的表示方法:
(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。
3.数列的分类:
4.数列{an}及前n项和之间的关系:
5.等差数列与等比数列对比小结:
等差数列等比数列
一、定义
二、公式1.
2.
1.
2.
三、性质1.,
称为与的等差中项
2.若(、、、),则
3.,,成等差数列
1.,
称为与的等比中项
2.若(、、、),则
3.,,成等比数列
(三)不等式
1、;;.
2、不等式的性质:①;②;③;
④,;⑤;
⑥;⑦;
⑧.
小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
在字母比较的选择或填空题中,常采用特值法验证。
3、一元二次不等式解法:
(1)化成标准式:;(2)求出对应的一元二次方程的根;
(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。
线性规划问题:
1.了解线性约束条件、目标函数、可行域、可行解、解
2.线性规划问题:求线性目标函数在线性约束条件下的值或最小值问题.
3.解线性规划实际问题的步骤:
(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证。
两类主要的目标函数的几何意义:
①-----直线的截距;②-----两点的距离或圆的半径;
4、均值定理:若,,则,即.;
称为正数、的算术平均数,称为正数、的几何平均数.
5、均值定理的应用:设、都为正数,则有
⑴若(和为定值),则当时,积取得值.
⑵若(积为定值),则当时,和取得最小值.
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高三数学必修五第二章知识点总结
1、等差数列的定义
如果一个数列从第2项起,每一项与它的.前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
2、等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n—1)d。
3、等差中项
如果a=(a+b)/2,那么a叫做a与b的等差中项。
4、等差数列的常用性质
(1)通项公式的推广:an=am+(n—m)d(n,m∈n_)。
(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈n_)。
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈n_)是公差为md的等差数列。
(4)数列sm,s2m—sm,s3m—s2m,…也是等差数列。
(5)s2n—1=(2n—1)an、
(6)若n为偶数,则s偶—s奇=nd/2;若n为奇数,则s奇—s偶=a中(中间项)。
高中数学共有五本必修和选修1-1,1-2(文科),2-1,2-2,2-3(理科),主要为代数(高考占比约为50%)和几何(高考占比25-30%),其他(算法,概率统计等)。
高一上期将会学习必修1整本书(集合和函数,初等函数,方程的根等),必修四(三角函数)等。主要为函数内容的学习,主要考察学生的抽象思维。而且函数的基本概念和性质,为整个高中的代数奠定了基础。在这一阶段的学习,学生应该尽量培养自己的抽象思维,多思考。可以适当少做题,多花时间在知识概念等的复习和理解上面,弄清楚所学内容之间的逻辑联系。
高一下期将会学习必修四(向量,三角函数和差公式等),必修五(解三角形,数列,解不等式)等。这一阶段的内容,主要考察学生的推演和计算能力。可以适当多做题,多训练,提高自己计算的速度和准确性。
高二将会进入几何部分的学习。
高二上期学习必修二(立体几何,直线和圆),必修三(算法,概率统计)等。这一阶段的内容对学生的空间想象力(立体几何)和逻辑思维能力要求较高,同时也要求学生具备较高的计算水平(经过高一下的训练)。同时,这也是对学生学习数学相对比较轻松的一个学期。所以,可以在学好本学期内容的基础上,对上学期的内容多做复习,温故而知新。
高二下期主要学习选修部分(圆锥曲线,导数等)。这一学期的内容是整个高考的压轴,也是最难的内容。它对学生各方面能力的要求都很高,是学生拿高分必须要学好的部分。对于这一阶段的学习,一定要形成自己的思想,在多思考的基础上,一定要动笔!
总之,对于数学的学习,新课很重要!接触知识的第一印象,很大程度上决定了你对整个板块知识的逻辑关系的认识。只有理清楚了数学各个知识之间的逻辑联系,形成自己的一套体系,才能更快更好地学好数学。
数学是高考科目之一,故从初一开始就要认真地学习数学。进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。
其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。
总之,对高中生来说,学好数学,要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。
导语一轮复习中,考生依据课本对基础知识点和考点,进行了全面的复习扫描,已建构起高考语文基本的学科知识、学科能力和思维方法。二轮复习是承上启下的重要一环,要在一轮复习的基础上,依据考纲,落实重点,突破难点,找准自己的增长点,提高复习备考的实效性。为你整理了《高三数学必修五知识点总结》希望可以帮助你学习!
1.高三数学必修五知识点总结
斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。
三角形斜边长等于根号下两直角边的平方和,即斜边c=√(a^2+b^2)
解答过程如下:
(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a2+b2=c2
(2)a2+b2=c2求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a2+b2)。
在几何中,斜边是直角三角形的最长边,与直角相对。直角三角形的斜边的长度可以使用毕达哥拉斯定理找到,该定理表示斜边长度的平方等于另外两边长度的平方和。例如,如果其中一方的长度为3(平方,9),另一方的长度为4(平方,16),那么它们的正方形加起来为25。斜边的长度为平方根25,即5。
2.高三数学必修五知识点总结
一个推导
利用错位相减法推导等比数列的前n项和:
sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qsn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)sn=a1-a1qn,∴sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
三种方法
等比数列的判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈n_),则{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈n_),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈n_),则{an}是等比数列.
注:前两种方法也可用来证明一个数列为等比数列.
3.高三数学必修五知识点总结
1.求导法则:
(c)/=0这里c是常数。即常数的导数值为0。
(_n)/=n_n-1特别地:(_)/=1(_-1)/=/=-_-2(f(_)±g(_))/=f/(_)±g/(_)(k?f(_))/=k?f/(_)
2.导数的几何物理意义:
k=f/(_0)表示过曲线y=f(_)上的点p(_0,f(_0))的切线的斜率。
v=s/(t)表示即时速度。a=v/(t)表示加速度。
3.导数的应用:
①求切线的斜率。
②导数与函数的单调性的关系
已知
(1)分析的定义域;
(2)求导数
(3)解不等式,解集在定义域内的部分为增区间
(4)解不等式,解集在定义域内的部分为减区间。
我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数在某个区间内可导。
③求极值、求最值。
注意:极值≠最值。函数f(_)在区间[a,b]上的值为极大值和f(a)、f(b)中的一个。最小值为极小值和f(a)、f(b)中最小的一个。
f/(_0)=0不能得到当_=_0时,函数有极值。
但是,当_=_0时,函数有极值f/(_0)=0
判断极值,还需结合函数的单调性说明。
4.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
4.高三数学必修五知识点总结
不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈n,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题a:a命题a:,命题b:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈r且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈n_,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
5.高三数学必修五知识点总结
1、等比中项
如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项。
有关系:
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以g2=ab是a,g,b三数成等比数列的必要不充分条件。
2、等比数列通项公式
an=a1_q’(n—1)(其中首项是a1,公比是q)
an=sn—s(n—1)(n≥2)
前n项和
当q≠1时,等比数列的前n项和的公式为
sn=a1(1—q’n)/(1—q)=(a1—a1_q’n)/(1—q)(q≠1)
当q=1时,等比数列的前n项和的公式为
sn=na1
3、等比数列前n项和与通项的关系
an=a1=s1(n=1)
an=sn—s(n—1)(n≥2)
4、等比数列性质
(1)若m、n、p、q∈n_,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}
(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数c为底,用一个等差数列的各项做指数构造幂can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和sn=a1(1—q’n)/(1—q)
(6)任意两项am,an的关系为an=am·q’(n—m)
(7)在等比数列中,首项a1与公比q都不为零。
注意:上述公式中a’n表示a的n次方。
导语 高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依赖初中时期老师“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培养自己主动获取知识、巩固知识的能力,制定学习计划,养成自主学习的好习惯。今天高一频道为正在拼搏的你整理了《高一数学必修五知识点总结》,希望以下内容可以帮助到您!
1.高一数学必修五知识点总结
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)
esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)
esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:
a、直线与平面垂直时,所成的角为直角,
b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
直线和平面垂直
直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点
直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
2.高一数学必修五知识点总结
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.
⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和s可以写成s=an+bn的形式(其中a、b为常数).
⑵在等差数列{a}中,当项数为2n(nn)时,s-s=nd,=;当项数为(2n-1)(n)时,s-s=a,=.
⑶若数列{a}为等差数列,则s,s-s,s-s,…仍然成等差数列,公差为.
⑷若两个等差数列{a}、{b}的前n项和分别是s、t(n为奇数),则=.
⑸在等差数列{a}中,s=a,s=b(n>m),则s=(a-b).
⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=_+(a-)上.
⑺记等差数列{a}的前n项和为s.①若a>0,公差d<0,则当a≥0且a≤0时,s;②若a<0,公差d>0,则当a≤0且a≥0时,s最小.
3.高一数学必修五知识点总结
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;
2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:
(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;
(2)根据需要构造函数,利用函数的相关知识解决问题;
(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;
3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。
数学必修五《等比数列的前n项和》知识点总结
一个推导
利用错位相减法推导等比数列的前n项和:
sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qsn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)sn=a1-a1qn,∴sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
三种方法
等比数列的.判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈n_),则{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈n_),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈n_),则{an}是等比数列.
注:前两种方法也可用来证明一个数列为等比数列.
导语当一个小小的心念变成成为行为时,便能成了习惯;从而形成性格,而性格就决定你一生的成败。成功与不成功之间有时距离很短——只要后者再向前几步。高一频道为莘莘学子整理了《高一年级数学必修五知识点总结》,希望对你有所帮助!
差数列的基本性质
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.
⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和s可以写成s=an+bn的形式(其中a、b为常数).
⑵在等差数列{a}中,当项数为2n(nn)时,s-s=nd,=;当项数为(2n-1)(n)时,s-s=a,=.
⑶若数列{a}为等差数列,则s,s-s,s-s,…仍然成等差数列,公差为.
⑷若两个等差数列{a}、{b}的前n项和分别是s、t(n为奇数),则=.
⑸在等差数列{a}中,s=a,s=b(n>m),则s=(a-b).
⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=_+(a-)上.
⑺记等差数列{a}的前n项和为s.①若a>0,公差d<0,则当a≥0且a≤0时,s;②若a<0,公差d>0,则当a≤0且a≥0时,s最小.
等比数列的基本性质
⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).
⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.
⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a.a.a.…=a.a.a.…..
⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}.
⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.
⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0.
⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.
⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列.
高中数学必修五:等比数列前n项和公式s的基本性质
⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是s=
也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论.
⑵当已知a,q,n时,用公式s=;当已知a,q,a时,用公式s=.
⑶若s是以q为公比的等比数列,则有s=s+qs.⑵
⑷若数列{a}为等比数列,则s,s-s,s-s,…仍然成等比数列.
⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为s与t,次n项和与次n项积分别为s与t,最后n项和与n项积分别为s与t,则s,s,s成等比数列,t,t,t亦成等比数列
万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)
cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)
升幂公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2
降幂公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈z;
(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα
(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα
(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα
(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα
(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,
tan(π/2+α)=-cotα,cot(π/2+α)=-tanα
(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,
tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα
(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,
tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈z
注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;
当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos.偶数则不变;
用角(k·π/2±α)所在的象限确定等式右边三角函数的正负.例:tan(3π/2+α)=-cotα
∵在这个式子中k=3,是奇数,因此等式右边应变为cot
又,∵角(3π/2+α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα.三角函数在各象限中的正负分布
sin:第一第二象限中为正;第三第四象限中为负cos:第一第四象限中为正;第二第三象限中为负cot、tan:第一第三象限中为正;第二第四象限中为负。
16位用户关注
22位用户关注
68位用户关注
42位用户关注
63位用户关注
60位用户关注
69位用户关注