七年级三角形知识点总结
1、三角形的分类
三角形按边的关系分类如下:
三角形包括不等边三角形和等腰三角形
等腰三角形包括底和腰不相等的等腰三角形和等边三角形
三角形按角的关系分类如下:
三角形包括直角三角形(有一个角为直角的三角形)和斜三角形
斜三角形包括锐角三角形(三个角都是锐角的三角形)和钝角三角形(有一个角为钝角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。
2、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
3、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。
推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
4、三角形的面积
三角形的面积=×底×高
全等三角形
1、全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。。
2、三角形全等的判定
三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“sas”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“asa”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“sss”)。
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有hl定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“hl”)
3、全等变换
只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
等腰三角形
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
2、三角形中的中位线
连接三角形两边中点的线段叫做三角形的'中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
直角三角形知识点总结
知识点在不断更新的同时也需要及时的归纳总结,才能更好的掌握,接下来小编给大家整理解直角三角形知识点整理,供大家参考阅读。
1解直角三角形
一、锐角三角函数
(一)、锐角三角函数定义在直角三角形abc中,c=900,设bc=a,ca=b,ab=c,锐角a的四个三角函数是:(1)正弦定义:在直角三角形中abc,锐角a的对边与斜边的比叫做角a的正弦,记作sina,即
sin a=ca,(2)余弦的定义:在直角三角行abc,锐角a的邻边与斜边的比叫做角a的余弦,记作cosa,即
cos a=cb,(3)正切的定义:在直角三角形abc中,锐角a的对边与邻边的比叫做角a的正切,记作tana,即
tan a=ba,(4)锐角a的邻边与对边的比叫做a的余切,记作cota即
aaaab的对边的邻边cot锐角a的正弦、余弦,正切、余切都叫做角a的锐角三角函数。这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角a必须在直角三角形中,且(2)在直角三角形abc中,每条边均用所对角的相应的小写字母表示。否则,不存在上述关系
2注意:锐角三角函数的定义应明确
(1)ca,cb,ba,ab四个比值的大小同△abc的三边的大小无关,只与锐角的大小有关,即当锐角a取固定值时,它的四个三角函数也是固定的;(2)sina不是sina的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样;(3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的'三角函数值等;(二)、同角三角函数的关系(1)平方关系:122sincos(2)倒数关系:tana cota=1(3)
商数关系:sincoscot,cossintan注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注意它们的变形公式。(2)sinsin22是的简写,读作“sin的平方”,不能将22sin写成sin前者是a的正弦值的平方,后者无意义;(3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,
如1cottan,1223030cossin22,而1cossin22就不一定成立。(4)同角三角函数关系用于化简三角函数式。(三)余角的函数关系式任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它
3的余角的正弦值
任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。即sina=cos(90-a)cosa=sin(90-a)tana=cot(90-a)cota=tan(90-a)注意:此关系涉及的两角必须互余,左右两边的函数名称不同,其主要作用就是改变函数名称。(四)特殊角的三角函数值00 300 450 600 90sin0 21 22 23 1 cos1 23 22 21 0 tan0 33 1 3不存在cot不存在3 1 33 0(五)三角函数值的变化规律及范围1.当角度在0~90之间变化时:正弦值岁角度的增大(或减小)而增大(或减小);余弦值随角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小);余切值随角度的增大(或减小)而减小(或增大);2、当0a时,01,01,
数学等边三角形知识点总结
等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。
等边三角形知识点
⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
⑷等边三角形的重要数据
角和边的数量 3
内角的大小 60°
⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的'中心。(四心合一)
⑹等边三角形内任意一点到三边的距离之和为定值(等于其高)
等边三角形的判定
⑴三边相等的三角形是等边三角形(定义)
⑵三个内角都相等(为60度)的三角形是等边三角形
⑶有一个角是60度的等腰三角形是等边三角形
(4) 两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
知识点总结:明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
相似三角形的知识点总结
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的`对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3. 判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
四、三角形相似的证题思路:
五、利用相似三角形证明线段成比例的一般步骤:
一“定”:先确定四条线段在哪两个可能相似的三角形中;
二“找”:再找出两个三角形相似所需的条件;
三“证”:根据分析,写出证明过程。
如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。
六、相似与全等:
全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:
1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。
2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“对应边相等”成“对应边成比例”。
常见考法
(1)利用判定定理证明三角形相似;
(2)利用三角形相似解决圆、函数的有关问题。
误区提醒
(1)根据相似三角形找对应边时,出现失误找错对应边,因此在写比例式时出错,导致解题错误信息;
(2)在定理的实际应用中,常常忽视“夹角相等”这个重条件,错误认为有两边对应比相等,再有一组角相等,就能得到两个三角形相似。
性质:
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c
余弦(cos)等于邻边比斜边;cosa=b/c
正切(tan)等于对边比邻边;tana=a/b
余切(cot)等于邻边比对边;cota=b/a
正割(sec)等于斜边比邻边;seca=c/b
余割(csc)等于斜边比对边。csca=c/a
初中研究的锐角 的 三角函数为:正弦(sin),余弦(cos),正切(tan)。
取值范围:
θ是锐角:
tanθ>0
cotθ>0
变化情况:
1.锐角三角函数值都是正值
2.当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;
正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);
正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
3.当角度在0°≤a≤90°间变化时,0≤sina≤1, 1≥cosa≥0;当角度在0°0。
关系式:
1)同角三角函数基本关系式
tanα·cotα=1
sin^2α+cos^2α=1
cos^2α+sin^2α=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
(sinα)^2+(cosα)^2=1
1+tanα=secα
1+cotα=cscα
2)诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
相似三角形定理知识点总结
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号'∽'表示,读作'相似于'。
3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
初中数学相似三角形定理知识点总结
从表中可以看出只要将全等三角形判定定理中的'对应边相等'的条件改为'对应边
成比例'就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的`方法。
6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8. 相似三角形的传递性
如果△abc∽△a1b1c1,△a1b1c1∽△a2b2c2,那么△abc∽a2b2c2
第一部分: 点 、线 、角
一 、 线
1、直线 2、射线 3、线段
二、角
1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。
另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
2.角的平分线
3、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4. 角的分类:(1)锐角 (2)直角 (3)钝角 (4)平角 (5)周角
5. 相关的角:
(1)对顶角 (2)互为补角 (3)互为余角
6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
7、角的性质
(1)对顶角相等 (2)同角或等角的余角相等 (3)同角或等角的补角相等。
三、相交线
1、斜线 2、两条直线互相垂直 3、垂线,垂足
4、垂线的性质
(l)过一点有且只有一条直线与己知直线垂直。
(2)垂线段最短。
四、距离
1、两点的距
2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。
五、平行线
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.
第二部分:三角形
知识点:
一、关于三角形的一些概念
1、三角形的角平分线。
三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)
三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心)
2、三角形的中线
三角形的中线也是一条线段(顶点到对边中点间的距离)
三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心)
3.三角形的高
三角形的高线也是一条线段(顶点到对边的距离)
注意:三角形的中线和角平分线都在三角形内。
如图 2-l, ad、 be、 cf都是么abc的角平分线,它们都在△abc内
如图2-2,ad、be、cf都是△abc的中线,它们都在△abc内
而图2-3,说明高线不一定在 △abc内,
图2—3—(1) 图2—3—(2) 图2-3一(3)
图2-3—(1),中三条高线都在△ abc内,
图2-3-(2),中高线cd在△abc内,而高线ac与bc是三角形的边;
图2-3一(3),中高线be在△abc内,而高线ad、cf在△abc外。
二、三角形三条边的关系
三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。
等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。
三角形分类
按接边相等关系来分类:
用集合表示,见图
三角形一边与另一边的延长线组成的角,叫三角形的外角。
推论2:三角形的一个外角等于和它不相邻的两个内角的和。
推论3:三角形的一个外角大于任何一个和它不相邻的内角。
例如图2—6中
∠1 >∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8;
∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。
四、全等三角形
能够完全重合的两个图形叫全等形。
两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。
全等三角形的对应边相等;全等三角形的对应角相等。
五、全等三角形的判定
1、边角边公理:“sas”
注意:一定要是两边夹角,而不能是边边角。
2、角边角公理:asa 3、aas 4、sss
3、直角三角形全等的判定:斜边,直角边”或hl
三角形的重要性质:三角形的稳定性。
六、角的平分线
定理1、在角的平分线上的点到这个角的两边的距离相等。
定理2、一个角的两边的距离相等的点,在这个角的平分线上。
可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条角平分线的交点(交于一点)
七、等腰三角形的判定
定理:如果一个三角形有两个角相,那这两个角所对的两条边也相等。(简写成“等角对等动”)。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角等于60°的等腰三角形是等边三角形
推论3:在直角三角形中,如果一个锐角等于3o°,那么它所对的直角边等于斜边的一半。
八、勾股定理
勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方:
勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系:
那么这个三角形是直角三角形
初中数学三角形的几何公理知识点总结
三角形三角形具有稳定性,在现实生活中有着非常多的体现,比如衣服架的底座等。
三角形
15 定理 三角形任意两边的和大于第三边
16 推论 三角形任意两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 边边边公理(sss) 有三边对应相等的两个三角形全等
25 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的'两个直角三角形全等
26 定理1 在角的平分线上的点到这个角的两边的距离相等
27 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
28 角的平分线是到角的两边距离相等的所有点的集合
29 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
30 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
31 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
32 推论3 等边三角形的各角都相等,并且每一个角都等于60°
33 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
34 推论1 三个角都相等的三角形是等边三角形
35 推论 2 有一个角等于60°的等腰三角形是等边三角形
36 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
37 直角三角形斜边上的中线等于斜边上的一半
38 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
39 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
40 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
41 定理1 关于某条直线对称的两个图形是全等形
42 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
43逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
44勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
45勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
三角形的内容又包括了好几类,比如直角三角形、锐角三角形、钝角三角形等。
性质:
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c
余弦(cos)等于邻边比斜边;cosa=b/c
正切(tan)等于对边比邻边;tana=a/b
余切(cot)等于邻边比对边;cota=b/a
正割(sec)等于斜边比邻边;seca=c/b
余割(csc)等于斜边比对边。csca=c/a
初中研究的锐角 的 三角函数为:正弦(sin),余弦(cos),正切(tan)。
取值范围:
θ是锐角:
tanθ>0
cotθ>0
变化情况:
1.锐角三角函数值都是正值
2.当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;
正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);
正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
3.当角度在0°≤a≤90°间变化时,0≤sina≤1, 1≥cosa≥0;当角度在0°0。
关系式:
1)同角三角函数基本关系式
tanα·cotα=1
sin^2α+cos^2α=1
cos^2α+sin^2α=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
(sinα)^2+(cosα)^2=1
1+tanα=secα
1+cotα=cscα
2)诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
一、推论
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
s.s.s. (side-side-side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等三角形。
s.a.s. (side-angle-side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等三角形。
a.s.a. (angle-side-angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等三角形。
a.a.s. (angle-angle-side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等三角形。
h.l.(hypotenuse -leg) (斜边、直角边):直角三角形中一条斜边和一条直角边都对应相等,该两个三角形就是全等三角形。
不同的定义推理出不同的判定方法,这就是全等三角形的特殊之处。
二、基础知识梳理
(一)、基本概念
1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。
(2)两角和它们的'夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
(二)灵活运用定理
证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。运用定理证明三角形全等时要注意以下几点。
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:
①夹边相等(asa)②任一组等角的对边相等(aas)
(2)已知条件中有两边对应相等,可找
①夹角相等(sas)②第三组边也相等(sss)
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(aas 或asa)②夹等角的另一组边相等(sas)
三、疑点、易错点
1、对全等三角形书写的错误
在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。切记不要弄错。
2、对全等三角形判定方法理解错误;
3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定势的消极影响。
初三数学扇形知识点归纳
1、弧长公式
n°的圆心角所对的弧长l的计算公式为l=nπr/180
2、扇形面积公式,其中n是扇形的圆心角度数,r是扇形的半径,l是扇形的弧长.
s=﹙n/360﹚πr2=1/2×lr
3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.
s=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.
一、选择题
1.(2023o珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为
a.24πcm2b.36πcm2c.12cm2d.24cm2
考点:圆柱的计算.
分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.
解答:解:圆柱的侧面积=2π×3×4=24π.
故选a.
点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.
2.(2023o广西贺州,第11题3分)如图,以ab为直径的⊙o与弦cd相交于点e,且ac=2,ae=,ce=1.则弧bd的长是
a.b.c.d.
考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.
分析:连接oc,先根据勾股定理判断出△ace的形状,再由垂径定理得出ce=de,故=,由锐角三角函数的定义求出∠a的度数,故可得出∠boc的度数,求出oc的长,再根据弧长公式即可得出结论.
解答:解:连接oc,
∵△ace中,ac=2,ae=,ce=1,
∴ae2+ce2=ac2,
∴△ace是直角三角形,即ae⊥cd,
∵sina==,
∴∠a=30°,
∴∠coe=60°,
∴=sin∠coe,即=,解得oc=,
∵ae⊥cd,
∴=,
∴===.
故选b.
一、等腰三角形
1、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边
推论2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论3:等边三角形的各角都相等,并且每一个角都等于60°
2、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角等于60°的等腰三角形是等边三角形
3、等腰三角形的性质定理等腰三角形的两个底角相等知识点,同学们都能灵活运用了吗。接下来还有更多更全的初中数学知识点尽在。
初中数学知识点总结:平面直角坐标系
二、平面直角坐标系
1、平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
2、水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3、平面直角坐标系的.要素:①在同一平面②两条数轴③互相垂直④原点重合
4、三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
三、平面直角坐标系的构成
1、在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
2、水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
四、点的坐标的性质
1、建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
2、对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
3、一个点在不同的象限或坐标轴上,点的坐标不一样。
五、因式分解的一般步骤
1、如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
2、通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
3、注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
六、因式分解
1、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
2、因式分解要素:①结果必须是整式
②结果必须是积的形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
3、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
4、公因式确定方法:
①系数是整数时取各项最大公约数。
②相同字母取最低次幂
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
5、提取公因式步骤:
①确定公因式。
②确定商式
③公因式与商式写成积的形式。
6、分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
性质:
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c
余弦(cos)等于邻边比斜边;cosa=b/c
正切(tan)等于对边比邻边;tana=a/b
余切(cot)等于邻边比对边;cota=b/a
正割(sec)等于斜边比邻边;seca=c/b
余割(csc)等于斜边比对边。csca=c/a
初中研究的锐角 的 三角函数为:正弦(sin),余弦(cos),正切(tan)。
取值范围:
θ是锐角:
tanθ>0
cotθ>0
变化情况:
1.锐角三角函数值都是正值
2.当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;
正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);
正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
3.当角度在0°≤a≤90°间变化时,0≤sina≤1, 1≥cosa≥0;当角度在0°0。
关系式:
1)同角三角函数基本关系式
tanα·cotα=1
sin^2α+cos^2α=1
cos^2α+sin^2α=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
(sinα)^2+(cosα)^2=1
1+tanα=secα
1+cotα=cscα
2)诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
初中三角形数学知识点总结
三角形的一个外角大于任何一个和它不相邻的内角。接下来为大家整合的是上海初中数学三角形知识点总结。
三角形知识点
三角形两边的和大于第三边
推论 三角形两边的差小于第三边
三角形内角和定理
三角形三个内角的和等于180°
推论1 直角三角形的两个锐角互余
推论2 三角形的一个外角等于和它不相邻的两个内角的和
推论3 三角形的一个外角大于任何一个和它不相邻的内角
中考知识点总结:三角形的一个外角等于和它不相邻的两个内角的和。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的`讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
三角形知识点总结
鉴于数学知识点的重要性,小编为您提供了这篇八年级上册数学全等三角形知识点总结,希望对同学们的数学有所帮助。
定义
能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中相似比为1:1的特殊情况)
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
表示:全等用≌表示,读作全等于。
判定公理
1、三组对应边分别相等的两个三角形全等(简称sss或边边边),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的.两个三角形全等(sas或边角边)。
3、有两角及其夹边对应相等的两个三角形全等(asa或角边角)。
由3可推到
4、有两角及其一角的对边对应相等的两个三角形全等(aas或角角边)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(hl或斜边,直角边) 所以,sss,sas,asa,aas,hl均为判定三角形全等的定理。
注意:在全等的判定中,没有aaa角角角和ssa(特例:直角三角形为hl,属于ssa)边边角,这两种情况都不能唯一确定三角形的形状。 a是英文角的缩写(angle),s是英文边的缩写(side)。
h是英文斜边的缩写(hypotenuse),l是英文直角边的缩写(leg)。
6.三条中线(或高、角分线)分别对应相等的两个三角形全等。
性质
三角形全等的条件:
1、全等三角形的对应角相等。
2、全等三角形的对应边相等
3、全等三角形的对应顶点相等。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角平分线相等。
6、全等三角形的对应中线相等。
7、全等三角形面积相等。
8、全等三角形周长相等。
9、全等三角形可以完全重合。
三角形全等的方法:
1、三边对应相等的两个三角形全等。(sss)
2、两边和它们的夹角对应相等的两个三角形全等。(sas)
3、两角和它们的夹边对应相等的两个三角形全等。(asa)
4、有两角及其一角的对边对应相等的两个三角形全等(aas)
5、斜边和一条直角边对应相等的两个直角三角形全等。(hl)
推论
要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
s.s.s. (side-side-side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
s.a.s. (side-angle-side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
a.s.a. (angle-side-angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
a.a.s. (angle-angle-side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
r.h.s. / h.l. (right angle-hypotenuse-side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。
但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:
a.a.a. (angle-angle-angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
a.s.s. (angle-side-side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角三角形的话,应以r.h.s.来判定。
1、性质中三角形全等是条件,结论是对应角、对应边相等。 而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用sas找全等三角形。
4、用在实际中,一般我们用全等三角形测相等的距离。以及相等的角,可以用于工业和军事。
5、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。
这篇八年级上册数学全等三角形知识点总结是小编精心为同学们准备的,祝大家学习愉快!
初中数学直角三角形定理公式总结
直角三角形的性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的`三边长a、b 、c有下面关系a^2+b^2=c^2
,那么这个三角形是直角三角形(勾股定理的逆定理)。
以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。
初中数学等腰三角形的性质定理公式
下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。
初中数学三角形定理公式
对于三角形定理公式的学习,我们做下面的内容讲解学习哦。
三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
44位用户关注
90位用户关注
39位用户关注
38位用户关注
64位用户关注
42位用户关注
65位用户关注
22位用户关注
68位用户关注
42位用户关注
63位用户关注
60位用户关注
69位用户关注