七年级数学上代数式知识点总结
一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
二、整式:单项式与多项式统称为整式。
1。单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。
2。多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
三、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
四、代数式书写要求:
1。代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;
2。数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的`书写顺序。如式子(a+b)·2·a应写成2a(a+b);
3。带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;
4。在代数式中出现除法运算时,按分数的写法来写;
5。在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a—b)kg。
五、系数与次数:
单项式的系数和次数,多项式的项数和次数。
1。单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;
(2)若单项式的系数是'1”或—1“时,'1'通常省略不写,但“—”号不能省略。
2。单项式的次数:单项式中所有字母的指数和叫做单项式的次数。
注意:(1)单项式的次数是它含有的所有字母的指数和,只与字母的指数有关,与其系数无关;
(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。
3。多项式的次数:多项式中次数最高的项的次数就是多项式的次数。
4。多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和”中单项式的个数。
六、列代数式:用含有数、字母和运算符号的式子把问题中的数量表示出来就是列代数式。
正确列出代数式,要掌握以下几点:(1)列代数式的关键是理解和找出问题中的数量关系;(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。
七、代数式求值:一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。
代数式求值的三种:1。直接代入求值;2。化简代入求值;3。整体代入求值。
一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。注意:
(1)单个数字与字母也是代数式;
(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
二、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数项的次数就是这个多项式的次数。
三、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
七年级上册数学代数式知识点整理总结
小编为您整理了七年级上册数学代数式知识点整理:期末考试复习,希望帮助您提供多想法。和小编一起学习吧,加油哦!
1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。
3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要;如:电费、水费、出租车、商店优惠-------。
4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
单项式的'系数:是指单项式中的数字因数;(不要漏负号和分母)
单项数的次数:是指单项式中所有字母的指数的和.(注意指数1)
5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
以上就是为大家整理的七年级上册数学代数式知识点整理:期末考试复习,大家还满意吗?希望对大家有所帮助!
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=_, =│_│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
七年级上册数学列代数式知识点总结
为了使孩子能够更好的成长,知识点是一种途径,初中频道为大家准备了七年级上册数学列代数式知识点。
一.仔细辨别词义
列代数式时,要先认真审题,抓住关键词语,仔细辩析词义。如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分。例:“3除a”,“被3除得a”,“a与b两数的平方差”,“a与b两数差的平方”,分别为“3/a、3a、a2-b2、(a-b)2”。
二.分清数量关系
要正确列代数式,只有分清数量之间的关系。如比m大3的数应为m+3;比一个数大3的数是m,则这个数为m-3;一个数是a的3位,这个数为3a;a是这个数的3倍,这个数为a/3。不要见多就加,见小就减,见倍就乘。
三.注意运算顺序
列代数式时,一般应在语言叙述的数量关系中,先读的先写,如a的2倍与b的3倍的'差,为2a-3b,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来,如a与b的差的3倍,为3(a-b)。
四.规范书写格式
列代数时要按要求规范地书写。像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号。注意代数式括号的适当运用。
五.正确进行代换
列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换。
以上为大家提供的七年级上册数学列代数式知识点大家仔细阅读了吗?最后祝同学们学习进步。
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=_, =│_│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
九年级数学代数式知识点总结
一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
注意:
(1)单个数字与字母也是代数式;
(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;
(3)代数式可按运算关系和运算结果两种情况理解。
二、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
三、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
四、代数式书写要求:
1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;
2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子2a(a+b);
3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;
4.在代数式中出现除法运算时,按分数的写法来写;
5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如(2a-b)kg。
五、系数与次数
单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;
(2)若单项式的系数是'1”或-1“时,'1'通常省略不写,但“-”号不能省略。
2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。
注意:(1)单项式的次数是它含有的'所有字母的指数和,只与字母的指数有关,与其系数无关;
(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。
3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数.
4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和” 中单项式的个数。
六、列代数式:用含有数、字母和运算符号的式子把问题中的数量表示出来就是列代数式。
正确列出代数式,要掌握以下几点:
(1)列代数式的关键是理解和找出问题中的数量关系;
(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;
(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。
七、代数式求值:一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。
代数式求值的三种中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为n个“口”字需用棋子。
解析 第1个“口”需要4枚棋子;
第2个“口”需要8枚棋子;
第3个“口”需要12枚棋子;
……
依次类推,第n枚棋子,故选a。
82位用户关注
22位用户关注
68位用户关注
42位用户关注
63位用户关注
60位用户关注
69位用户关注