(1)立体几何图形可以分为以下几类:
第一类:柱体;
包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、n棱柱;
棱柱体积统一等于底面面积乘以高,即v=sh,
第二类:锥体;
包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及n棱锥;
棱锥体积统一为v=sh/3,
第三类:球体;
此分类只包含球一种几何体,
体积公式v=4πr3/3,
其他不常用分类:圆台、棱台、球冠等很少接触到。
大多几何体都由这些几何体组成。
(2)平面几何图形如何分类
a.圆形
b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……
注:正方形既是矩形也是菱形
考点一、直线、射线和线段(3分)
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念
一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念
直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。
5、线段的概念
直线上两个点和它们之间的部分叫做线段。这两个点叫做线段的端点。
6、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:
(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质
(1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质
(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
9、线段垂直平分线的性质定理及逆定理
垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
考点二、角(3分)
1、角的相关概念
有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
当角的两边在一条直线上时,组成的角叫做平角。
平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。
如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。
如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。
2、角的表示
角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠b,∠c等。
④用三个大写英文字母表示任一个角,如∠bad,∠bae,∠cae等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
3、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’=60”
4、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
5、角的平分线及其性质
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:
(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
考点三、相交线(3分)
1、相交线中的角
两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。
临补角互补,对顶角相等。
直线ab,cd与ef相交(或者说两条直线ab,cd被第三条直线ef所截),构成八个角。其中∠1与∠5这两个角分别在ab,cd的上方,并且在ef的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在ab,cd之间,并且在ef的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线ab,cd之间,并侧在ef的同侧,像这样位置的两个角叫做同旁内角。
2、垂线
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线ab,cd互相垂直,记作“ab⊥cd”(或“cd⊥ab”),读作“ab垂直于cd”(或“cd垂直于ab”)。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。
考点四、平行线(3~8分)
1、平行线的概念
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“ab∥cd”,读作“ab平行于cd”。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定
平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
平行线的两条判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
考点五、命题、定理、证明(3~8分)
1、命题的概念
判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)
真命题(正确的命题)
命题
假命题(错误的命题)
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理
用推理的方法判断为正确的命题叫做定理。
5、证明
判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
考点六、投影与视图(3分)
1、投影
投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
2、视图
当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视图、左视图。
主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。
俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。
左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。
(1)立体几何图形可以分为以下几类:
第一类:柱体;
包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、n棱柱;
棱柱体积统一等于底面面积乘以高,即v=sh,
第二类:锥体;
包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及n棱锥;
棱锥体积统一为v=sh/3,
第三类:球体;
此分类只包含球一种几何体,
体积公式v=4πr3/3,
其他不常用分类:圆台、棱台、球冠等很少接触到。
大多几何体都由这些几何体组成。
(2)平面几何图形如何分类
a.圆形
b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……
注:正方形既是矩形也是菱形
1 、正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a
2 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a
3 、长方形
c周长 s面积 a边长
周长=(长+宽)×2
c=2(a+b)
面积=长×宽
s=ab
4 、长方体
v:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
s=2(ab+ah+bh)
(2)体积=长×宽×高
v=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
s面积 c周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
c=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
奥数常用公式:
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
1 、正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a
2 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a
3 、长方形
c周长 s面积 a边长
周长=(长+宽)×2
c=2(a+b)
面积=长×宽
s=ab
4 、长方体
v:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
s=2(ab+ah+bh)
(2)体积=长×宽×高
v=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
s面积 c周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
c=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
奥数常用公式:
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
(1)立体几何图形可以分为以下几类:
第一类:柱体;
包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、n棱柱;
棱柱体积统一等于底面面积乘以高,即v=sh,
第二类:锥体;
包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及n棱锥;
棱锥体积统一为v=sh/3,
第三类:球体;
此分类只包含球一种几何体,
体积公式v=4πr3/3,
其他不常用分类:圆台、棱台、球冠等很少接触到。
大多几何体都由这些几何体组成。
(2)平面几何图形如何分类
a.圆形
b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……
注:正方形既是矩形也是菱形
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
图形创意课程是本校艺术设计教研室老师在经过多年的教学经验的积累,吧专业课程与国际型创意大赛相结合的专业必修课程,同学可以在学习过程中直接的感受到课程对一个艺术设计工作者的重要性。
经过多次调整,本门专业课程定于大一下期学习,紧跟平面构成和色彩构成等基础训练课。主要教学类容包括:发散性思维训练,以一种联想的方式围绕生活元素,展开想象开始创意。名字联想,把发散性思维训练所学方法落实到文字的联想,为图形创意做好充分的准备。再接着是蓝色联想,开始涉足图形图像的创意,以图形的创意来重新诠释这些生活中的元素。最后是中国元素创意设计,以平面构成的基本方法,利用具有中国味道的元素进行创意设计,整个过程中可以巩固软件知识,发挥图形创意的中心意义的作用,并结合参与“中国元素创意设计大赛”,让同学尽情发挥,作品挑选出优秀者免费参加大赛。
本门课程吧同学对专业课程学习的热情推到了高-潮,掀起了专业学习的创意热潮,最后的创意作品展览更是让全校弥漫着一种创意的气息,“潮”便成了同学们生活中的一句口头禅。
图形创意是成功的,它源自老师们多年的专研和探索实践。课程整体来说由易到难,层层深入,同学易学易懂。当然,也有一些不完美的地方,这些都是专业课程跟着时代慢慢向前的动力!
1 、正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a
2 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a
3 、长方形
c周长 s面积 a边长
周长=(长+宽)×2
c=2(a+b)
面积=长×宽
s=ab
4 、长方体
v:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
s=2(ab+ah+bh)
(2)体积=长×宽×高
v=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
s面积 c周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
c=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
奥数常用公式:
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
立体图形认识、表面积、体积
一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。
六、圆柱和圆锥三种关系:
①等底等高:体积1︰3
②等底等体积:高1︰3
③等高等体积:底面积1︰3
七、等底等高的圆柱和圆锥:
①圆锥体积是圆柱的1/3,
②圆柱体积是圆锥的3倍,
③圆锥体积比圆柱少2/3,
④圆柱体积比圆锥多2倍。
1 、正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a
2 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a
3 、长方形
c周长 s面积 a边长
周长=(长+宽)×2
c=2(a+b)
面积=长×宽
s=ab
4 、长方体
v:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
s=2(ab+ah+bh)
(2)体积=长×宽×高
v=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
s面积 c周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
c=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
奥数常用公式:
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
上学期平面071班的《图形创意》课程,随着今天下午对大家考试作业拍摄的最后一声快门声,而圆满落下帷幕。
一共64学时,4学分的课程,我与同学们共同度过了6个礼拜的时间。课堂上我见到了很多有新奇的想法与精美的创意图形。我感慨现在学生们具有创造性的智慧与想法。也感谢学生们一直配合着我整个教学工作的完成。
按照学院惯例,每门课程结束后,老师都要进行课程心得的总结。目的也是为了在过去的教学经验中提高与逐步完善自身的教学。下面就从两点入手,作简单的总结。
从自身教学方面而言,我能严格按照教学大纲执行教学安排,课程每个章节与练习环节紧密相扣。整个教学过程分两部分。一是以多媒体手段进行的理论课程教学部分,二是以指导学生在教室完成布置的课题训练部分。丰富生动的ppt课件与耐心的逐个指导,使得整个教学纪律严谨而活泼。学生们也在这种轻松的氛围中学习和享受着《图形创意》课程给大家带来的乐趣。
面对学生们每一次的作业草图,我常常是一个个严格检查指导,才放行通过。这一点,也是多年教学过程中我逐渐认识到的。对待学生的作业放任自流,就是对学生不负责任,就是对自己的职业不负责任。反而学生还怪罪老师没有管好他们。因为他们毕竟还是自律性较弱孩子。
从学生学习方面而言,早在第一节课我强烈要求他们不得迟到早退后。于是在后面的每堂课程,几乎所有学生都能做到不迟到,不旷课,不早退。好与坏的习惯往往都是在年轻时养成的,作为一名未来的设计师。对待自己言行举止不能做到严谨,是件可怕的事情。那么作为老师的我们就该起到帮扶的职责。严格要求课堂纪律则是最起码应该做到的。
另外,在前期理论课程的学习过程中,大家都养成了积极认真做课堂笔记的好习惯。在图形绘制过程中,能大量的画草图,大量的阅读课外参考书籍。这几点,是最让我满意的。也是今后我个人教学中会一直会给学生强调的。
《图形创意》课程对于本人来说也不是第一次教了。但每一次授课,我都会有很多收获和提高。我很欣慰,学生的作业也是__届比__届完成得质量高。总之老师严格的教学态度,严谨的工作作风。无时无刻影响着学生的学习积极性与作业态度。只有这样,课堂才是既严肃又轻松的环境,在这种环境下,老师教的游刃有余,学生学的充实快乐。
最后,我衷心期望学生能将《图形创意》课程上所获的知识,融会贯通地运用到今后的专业课程学习,以及具体设计作品中去。我想那才是最值得我欣慰的事情了。
图形创意课程小结(2):
此次课程设计,学到了很多课内学不到的东西,比如独立思考解决问题,出现差错的随机应变,和与人合作共同提高,都受益非浅,今后的制作应该更轻松,自己也都能
扛的起并高质量的完成项目。
通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
1 、正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a
2 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a
3 、长方形
c周长 s面积 a边长
周长=(长+宽)×2
c=2(a+b)
面积=长×宽
s=ab
4 、长方体
v:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
s=2(ab+ah+bh)
(2)体积=长×宽×高
v=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
s面积 c周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
c=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
奥数常用公式:
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
22位用户关注
22位用户关注
68位用户关注
42位用户关注
63位用户关注
60位用户关注
69位用户关注