高一数学必修一知识点总结范例
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性,
(2) 元素的互异性,
(3) 元素的无序性,
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
? 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:n
正整数集 n_或 n+ 整数集z 有理数集q 实数集r
1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{_?r| _-3>;2} ,{_| _-3>;2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{_|_2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)a是b的一部分,;(2)a与b是同一集合。
反之: 集合a不包含于集合b,或集合b不包含集合a,记作a b或b a
2.“相等”关系:a=b (5≥5,且5≤5,则5=5)
实例:设 a={_|_2-1=0} b={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。a?a
②真子集:如果a?b,且a? b那就说集合a是集合b的真子集,记作a b(或b a)
③如果 a?b, b?c ,那么 a?c
④ 如果a?b 同时 b?a 那么a=b
3. 不含任何元素的集合叫做空集,记为φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a b(读作‘a交b’),即a b={_|_ a,且_ b}.
由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a b(读作‘a并b’),即a b ={_|_ a,或_ b}).
设s是一个集合,a是s的一个子集,由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
更多资料请点击》》http://class.hujiang.com/category/131181576619/p28_292
二、函数的有关概念
1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数_,在集合b中都有唯一确定的数f(_)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(_),_∈a.其中,_叫做自变量,_的取值范围a叫做函数的定义域;与_的值相对应的y值叫做函数值,函数值的集合{f(_)| _∈a }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数_的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的._的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(_) , (_∈a)中的_为横坐标,函数值y为纵坐标的点p(_,y)的集合c,叫做函数 y=f(_),(_ ∈a)的图象.c上每一点的坐标(_,y)均满足函数关系y=f(_),反过来,以满足y=f(_)的每一组有序实数对_、y为坐标的点(_,y),均在c上 .
(2) 画法
a、 描点法:
b、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设a、b是两个非空的集合,如果按某一个确定的对应法则f,使对于集合a中的任意一个元素_,在集合b中都有唯一确定的元素y与之对应,那么就称对应f:a b为从集合a到集合b的一个映射。记作f:a→b
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈m),u=g(_)(_∈a),则 y=f[g(_)]=f(_)(_∈a) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(_)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量_1,_2,当_1
如果对于区间d上的任意两个自变量的值_1,_2,当_1f(_2),那么就说f(_)在这个区间上是减函数.区间d称为y=f(_)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(_)在某个区间是增函数或减函数,那么说函数y=f(_)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(a) 定义法:
○1 任取_1,_2∈d,且_1
○2 作差f(_1)-f(_2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(_1)-f(_2)的正负);
○5 下结论(指出函数f(_)在给定的区间d上的单调性).
(b)图象法(从图象上看升降)
(c)复合函数的单调性
复合函数f[g(_)]的单调性与构成它的函数u=g(_),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=f(_),那么f(_)就叫做偶函数.
(2).奇函数
一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=—f(_),那么f(_)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-_)与f(_)的关系;
○3作出相应结论:若f(-_) = f(_) 或 f(-_)-f(_) = 0,则f(_)是偶函数;若f(-_) =-f(_) 或 f(-_)+f(_) = 0,则f(_)是奇函数.
(2)由 f(-_)±f(_)=0或f(_)/f(-_)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(_)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(_)在_=b处有最大值f(b);
如果函数y=f(_)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(_)在_=b处有最小值f(b);
1.1柱、锥、台、球的结构特征
1.2空间几何体的三视图和直观图
11三视图:
正视图:从前往后
侧视图:从左往右
俯视图:从上往下
22画三视图的原则:
长对齐、高对齐、宽相等
33直观图:斜二测画法
44斜二测画法的步骤:
(1).平行于坐标轴的线依然平行于坐标轴;
(2).平行于y轴的线长度变半,平行于_,z轴的线长度不变;
(3).画法要写好。
5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
1.3空间几何体的表面积与体积
(一)空间几何体的表面积
1棱柱、棱锥的表面积:各个面面积之和
2圆柱的表面积3圆锥的表面积
4圆台的表面积
5球的表面积
(二)空间几何体的体积
1柱体的体积
2锥体的体积
3台体的体积
4球体的体积
高二数学必修二知识点:直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
2.1.1
1平面含义:平面是无限延展的
2平面的画法及表示
(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面ac、平面abcd等。
3三个公理:
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
符号表示为
a∈l
b∈l=>lα
a∈α
b∈α
公理1作用:判断直线是否在平面内
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:a、b、c三点不共线=>有且只有一个平面α,
使a∈α、b∈α、c∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:p∈α∩β=>α∩β=l,且p∈l
公理3作用:判定两个平面是否相交的依据
2.1.2空间中直线与直线之间的位置关系
1空间的两条直线有如下三种关系:
共面直线
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。
2公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线
a∥b
c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
4注意点:
①a'与b'所成的角的大小只由a、b的相互位置来确定,与o的选择无关,为了简便,点o一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3—2.1.4空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示
aαa∩α=aa∥α
2.2.直线、平面平行的判定及其性质
2.2.1直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
aα
bβ=>a∥α
a∥b
2.2.2平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
aβ
bβ
a∩b=pβ∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3—2.2.4直线与平面、平面与平面平行的性质
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
aβa∥b
α∩β=b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面与平面平行得出直线与直线平行
2.3直线、平面垂直的判定及其性质
2.3.1直线与平面垂直的判定
1、定义
如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作l⊥α,直线l叫做平面α的垂线,平面α叫做直线l的垂面。直线与平面垂直时,它们公共点p叫做垂足。
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
注意点:a)定理中的“两条相交直线”这一条件不可忽视;
b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
2.3.2平面与平面垂直的判定
1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形
2、二面角的记法:二面角α-l-β或α-ab-β
3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
2.3.3—2.3.4直线与平面、平面与平面垂直的性质
1、定理:垂直于同一个平面的两条直线平行。
2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
第一章 集合与函数概念
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由happy的字母组成的集合{h,a,p,y}
(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:_ kb 1.c om
非负整数集(即自然数集) 记作:n
正整数集 :n_或 n+
整数集: z
有理数集: q
实数集: r
1)列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{_r|_-3>2} ,{_|_-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) venn图:
4、集合的分类:
(1)有限集 含有有限个元素的集合
(2)无限集 含有无限个元素的集合
(3)空集 不含任何元素的集合 例:{_|_2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)a是b的一部分,;(2)a与b是同一集合。
反之: 集合a不包含于集合b,或集合b不包含集合a,记作a b或b a
2.“相等”关系:a=b (5≥5,且5≤5,则5=5)
实例:设 a={_|_2-1=0} b={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。aa
② 真子集:如果ab,且a b那就说集合a是集合b的真子集,记作a b(或b a)
③ 如果 ab, bc ,那么 ac
④ 如果ab 同时 ba 那么a=b
3. 不含任何元素的集合叫做空集,记为φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a b(读作‘a交b’),即a b={_|_ a,且_ b}.
由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a b(读作‘a并b’),即a b ={_|_ a,或_ b}).
设s是一个集合,a是s的一个子集,由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
记作 ,即
csa=
韦
恩
图
示
性
质 a a=a
a φ=φ
a b=b a
a b a
a b b
a a=a
a φ=a
a b=b a
a b a
a b b
(cua) (cub)
= cu (a b)
(cua) (cub)
= cu(a b)
a (cua)=u
a (cua)= φ.
二、函数的有关概念
1.函数的概念
设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数_,在集合b中都有确定的数f(_)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(_),_∈a.其中,_叫做自变量,_的取值范围a叫做函数的定义域;与_的值相对应的y值叫做函数值,函数值的集合{f(_)| _∈a }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数_的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的_的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);
②定义域一致 (两点必须同时具备)
2.值域 : 先考虑其定义域
(1)观察法 (2)配方法 (3)代换法
3. 函数图象知识归纳
(1)定义:
在平面直角坐标系中,以函数 y=f(_) , (_∈a)中的_为横坐标,函数值y为纵坐标的点p(_,y)的集合c,叫做函数 y=f(_),(_ ∈a)的图象.c上每一点的坐标(_,y)均满足函数关系y=f(_),反过来,以满足y=f(_)的每一组有序实数对_、y为坐标的点(_,y),均在c上 .
(2) 画法
1.描点法: 2.图象变换法:常用变换方法有三种:1)平移变换2)伸缩变换3)对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示.
5.映射
一般地,设a、b是两个非空的集合,如果按某一个确定的对应法则f,使对于集合a中的任意一个元素_,在集合b中都有确定的元素y与之对应,那么就称对应f:a b为从集合a到集合b的一个映射。记作“f(对应关系):a(原象) b(象)”
对于映射f:a→b来说,则应满足:
(1)集合a中的每一个元素,在集合b中都有象,并且象是的;
(2)集合a中不同的元素,在集合b中对应的象可以是同一个;
(3)不要求集合b中的每一个元素在集合a中都有原象。
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈m),u=g(_)(_∈a),则 y=f[g(_)]=f(_)(_∈a) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(_)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量_1,_2,当_1
如果对于区间d上的任意两个自变量的值_1,_2,当_1
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(_)在某个区间是增函数或减函数,那么说函数y=f(_)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(a) 定义法:
(1)任取_1,_2∈d,且_1
(2)作差f(_1)-f(_2);或者做商
(3)变形(通常是因式分解和配方);
(4)定号(即判断差f(_1)-f(_2)的正负);
(5)下结论(指出函数f(_)在给定的区间d上的单调性).
(b)图象法(从图象上看升降)
(c)复合函数的单调性
复合函数f[g(_)]的单调性与构成它的函数u=g(_),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数:一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=f(_),那么f(_)就叫做偶函数.
(2)奇函数:一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=—f(_),那么f(_)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
9.利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-_)与f(_)的关系;
○3作出相应结论:若f(-_) = f(_) 或 f(-_)-f(_) = 0,则f(_)是偶函数;若f(-_) =-f(_) 或 f(-_)+f(_) = 0,则f(_)是奇函数.
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-_)±f(_)=0或f(_)/f(-_)=±1来判定; (3)利用定理,或借助函数的图象判定 .
10、函数的解析表达式
(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法
11.函数(小)值
○1 利用二次函数的性质(配方法)求函数的(小)值
○2 利用图象求函数的(小)值
○3 利用函数单调性的判断函数的(小)值:
如果函数y=f(_)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(_)在_=b处有值f(b);
如果函数y=f(_)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(_)在_=b处有最小值f(b);
第三章 基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ _.
负数没有偶次方根;0的任何次方根都是0,记作 。
当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
,
0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质
(1) · ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数,其中_是自变量,函数的定义域为r.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
a>1 0<1
定义域 r 定义域 r
值域y>0 值域y>0
在r上单调递增 在r上单调递减
非奇非偶函数 非奇非偶函数
函数图象都过定点(0,1) 函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
二、对数函数
(一)对数
1.对数的概念:
一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)
说明:○1 注意底数的限制 ,且 ;
○2 ;
○3 注意对数的书写格式.
两个重要对数:
○1 常用对数:以10为底的对数 ;
○2 自然对数:以无理数 为底的对数的对数 .
指数式与对数式的互化
幂值 真数
= n = b
底数
指数 对数
(二)对数的运算性质
如果 ,且 , , ,那么:
○1 · + ;
○2 - ;
○3 .
注意:换底公式: ( ,且 ; ,且 ; ).
利用换底公式推导下面的结论:(1) ;(2) .
(3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式
(二)对数函数
1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.
○2 对数函数对底数的限制: ,且 .
2、对数函数的性质:
a>1 0<1
定义域_>0 定义域_>0
值域为r 值域为r
在r上递增 在r上递减
函数图象都过定点(1,0) 函数图象都过定点(1,0)
(三)幂函数
1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
第四章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。
即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
3、函数零点的求法:
○1 (代数法)求方程 的实数根;
○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数 .
(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
5.函数的模型
导语高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的想选择。如何度过这重要又紧张的一年,我们可以从提高学习效率来着手!高三频道为各位同学整理了《高三上册数学必修一知识点总结》,希望你努力学习,圆金色六月梦!
1.高三上册数学必修一知识点总结
两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”;
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;
(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。
2.高三上册数学必修一知识点总结
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0⇔;a-b=0⇔;a-b<0⇔.
另外,若b>0,则有>1⇔;=1⇔;<1⇔.
概括为:作差法,作商法,中间量法等.
3.不等式的性质
(1)对称性:a>b⇔;
(2)传递性:a>b,b>c⇔;
(3)可加性:a>b⇔a+cb+c,a>b,c>d⇒a+cb+d;
(4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒;
(5)可乘方:a>b>0⇒(n∈n,n≥2);
(6)可开方:a>b>0⇒(n∈n,n≥2).
复习指导
1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
(1)倒数性质:
①a>b,ab>0⇒<;
②a<0
③a>b>0,0;
④0
(2)若a>b>0,m>0,则
①真分数的性质:<;>(b-m>0);
②假分数的性质:>;<(b-m>0).
4.高三上册数学必修一知识点总结
1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;
2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;
3、渐近线,(垂直、水平或斜渐近线);
4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在.
下面我们重点讲一下数列极限的典型方法.
重要题型及点拨
1.求数列极限
求数列极限可以归纳为以下三种形式.
★抽象数列求极限
这类题一般以选择题的形式出现,因此可以通过举反例来排除.此外,也可以按照定义、基本性质及运算法则直接验证.
★求具体数列的极限,可以参考以下几种方法:
a.利用单调有界必收敛准则求数列极限.
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值.
b.利用函数极限求数列极限
如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解.
★求项和或项积数列的极限,主要有以下几种方法:
a.利用特殊级数求和法
如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果.
b.利用幂级数求和法
若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值.
c.利用定积分定义求极限
若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限.
d.利用夹逼定理求极限
若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解.
e.求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算.
5.高三上册数学必修一知识点总结
一、定义与定义式:
自变量_和因变量y有如下关系:
y=k_+b
则此时称y是_的一次函数。
特别地,当b=0时,y是_的正比例函数。
即:y=k_(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的_的变化值成正比例,比值为k
即:y=k_+b(k为任意不为零的实数b取任何实数)
2.当_=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与_轴和y轴的交点)
2.性质:
(1)在一次函数上的任意一点p(_,y),都满足等式:y=k_+b。
(2)一次函数与y轴交点的坐标总是(0,b),与_轴总是交于(-b/k,0)正比例函数的图像总是过原点。
6.高三上册数学必修一知识点总结
(1)直线的倾斜角
定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与p1、p2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高一数学集合有关概念
集合的含义
集合的中元素的三个特性:
元素的确定性如:世界上的山
元素的互异性如:由happy的字母组成的集合{h,a,p,y}
元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}
集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集)记作:n
正整数集n_或n+整数集z有理数集q实数集r
列举法:{a,b,c……}
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{_(r|_-3>2},{_|_-3>2}
语言描述法:例:{不是直角三角形的三角形}
venn图:
4、集合的分类:
有限集含有有限个元素的集合
无限集含有无限个元素的集合
空集不含任何元素的集合例:{_|_2=-5}
高一数学集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
2.“相等”关系:a=b(5≥5,且5≤5,则5=5)
实例:设a={_|_2-1=0}b={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。a(a
②真子集:如果a(b,且a(b那就说集合a是集合b的真子集,记作ab(或ba)
③如果a(b,b(c,那么a(c
④如果a(b同时b(a那么a=b
3.不含任何元素的集合叫做空集,记为φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
高一数学考试命题趋势
1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。
2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。
3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。
4.立体几何知识:2023年已经变得简单,2023年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。
5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。
6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。
7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。
高一数学必修1知识点总结:幂函数的性质考点
定义:
形如y=_^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当_为不同的数值时,幂函数的值域的不同情况如下:
在_大于0时,函数的值域总是大于0的实数。
在_小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则_^(p/q)=q次根号(_的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则_=1/(_^k),显然_≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到_所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于_>;0,则a可以是任意实数;
排除了为0这种可能,即对于_<;0和_>;0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
导语高一阶段,是打基础阶段,是将来决战高考取胜的关键阶段,今早进入角色,安排好自己学习和生活,会起到事半功倍的效果。以下是为你整理的《高一上册数学必修一知识点总结》,学习路上,为你加油!
1.高一上册数学必修一知识点总结
1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。
2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。
3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。
4.立体几何知识:2023年已经变得简单,2023年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。
5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。
6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。
2.高一上册数学必修一知识点总结
(一)指数与指数幂的运算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicale_ponent),叫做被开方数(radicand)。
当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2、分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
3、实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(e_ponential),其中_是自变量,函数的定义域为r。
注意:指数函数的底数的取值范围,底数不能是负数、零和1。
2、指数函数的图象和性质
3.高一上册数学必修一知识点总结
1.函数的奇偶性。
(1)若f(_)是偶函数,那么f(_)=f(-_)。
(2)若f(_)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。
(3)判断函数奇偶性可用定义的等价形式:f(_)±f(-_)=0或(f(_)≠0)。
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。
2.复合函数的有关问题。
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(_)]的定义域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定义域为[a,b],求f(_)的定义域,相当于_∈[a,b]时,求g(_)的值域(即f(_)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定。
3.函数图像(或方程曲线的对称性)。
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。
(2)证明图像c1与c2的对称性,即证明c1上任意点关于对称中心(对称轴)的对称点仍在c2上,反之亦然。
(3)曲线c1:f(_,y)=0,关于y=_+a(y=-_+a)的对称曲线c2的方程为f(y-a,_+a)=0(或f(-y+a,-_+a)=0)。
(4)曲线c1:f(_,y)=0关于点(a,b)的对称曲线c2方程为:f(2a-_,2b-y)=0。
(5)若函数y=f(_)对_∈r时,f(a+_)=f(a-_)恒成立,则y=f(_)图像关于直线_=a对称。
4.函数的周期性。
(1)y=f(_)对_∈r时,f(_+a)=f(_-a)或f(_-2a)=f(_)(a>0)恒成立,则y=f(_)是周期为2a的周期函数。
(2)若y=f(_)是偶函数,其图像又关于直线_=a对称,则f(_)是周期为2︱a︱的周期函数。
(3)若y=f(_)奇函数,其图像又关于直线_=a对称,则f(_)是周期为4︱a︱的周期函数。
(4)若y=f(_)关于点(a,0),(b,0)对称,则f(_)是周期为2的周期函数。
5.判断对应是否为映射时,抓住两点。
(1)a中元素必须都有象且。
(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象。
6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
7.对于反函数,应掌握以下一些结论。
(1)定义域上的单调函数必有反函数。
(2)奇函数的反函数也是奇函数。
(3)定义域为非单元素集的偶函数不存在反函数。
(4)周期函数不存在反函数。
(5)互为反函数的两个函数具有相同的单调性。
(6)y=f(_)与y=f-1(_)互为反函数,设f(_)的定义域为a,值域为b,则有f[f--1(_)]=_(_∈b),f--1[f(_)]=_(_∈a)。
8.处理二次函数的问题勿忘数形结合。
二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。
9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。
10.恒成立问题的处理方法。
(1)分离参数法。
(2)转化为一元二次方程的根的分布列不等式(组)求解。
4.高一上册数学必修一知识点总结
1.“包含”关系—子集
注意:有两种可能(1)a是b的一部分;(2)a与b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
2.“相等”关系:a=b(5≥5,且5≤5,则5=5)
实例:设a={_|_2-1=0}b={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。a(a
②真子集:如果a(b,且a(b那就说集合a是集合b的真子集,记作ab(或ba)
③如果a(b,b(c,那么a(c
④如果a(b同时b(a那么a=b
3.不含任何元素的集合叫做空集,记为φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
5.高一上册数学必修一知识点总结
空间几何体表面积体积公式:
1、圆柱体:表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πr2+πr[(h2+r2)的]体积:πr2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,s=6a2,v=a3
4、长方体a-长,b-宽,c-高s=2(ab+ac+bc)v=abc
5、棱柱s-h-高v=sh
6、棱锥s-h-高v=sh/3
7、s1和s2-上、下h-高v=h[s1+s2+(s1s2)^1/2]/3
8、s1-上底面积,s2-下底面积,s0-中h-高,v=h(s1+s2+4s0)/6
9、圆柱r-底半径,h-高,c—底面周长s底—底面积,s侧—,s表—表面积c=2πrs底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h
10、空心圆柱r-外圆半径,r-内圆半径h-高v=πh(r^2-r^2)
11、r-底半径h-高v=πr^2h/3
12、r-上底半径,r-下底半径,h-高v=πh(r2+rr+r2)/313、球r-半径d-直径v=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径v=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高v=πh[3(r12+r22)+h2]/6
16、圆环体r-环体半径d-环体直径r-环体截面半径d-环体截面直径v=2π2rr2=π2dd2/4
17、桶状体d-桶腹直径d-桶底直径h-桶高v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)
高中数学必修一知识点总结
高中数学必修一知识点总结
一、直线与方程
(1)直线的倾斜角
定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。当 时, 。当 时, ;当 时, 不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与p1、p2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式: 直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于_1,所以它的方程是_=_1。
②斜截式: ,直线斜率为k,直线在y轴上的截距为b
③两点式: ( )直线两点 ,
④截矩式: 其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。
⑤一般式: (a,b不全为0)
注意:○1各式的适用范围
○2特殊的方程如:平行于_轴的直线: (b为常数); 平行于y轴的直线: (a为常数);
(4)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线 ( 是不全为0的常数)的直线系: (c为常数)
(二)过定点的直线系
(?)斜率为k的直线系: ,直线过定点 ;
(?)过两条直线 , 的交点的直线系方程为 ( 为参数),其中直线 不在直线系中。
(5)两直线平行与垂直
当 , 时, ;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(6)两条直线的交点
相交
交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解 与 重合
(7)两点间距离公式:设 是平面直角坐标系中的两个点,则
(8)点到直线距离公式:一点 到直线 的距离
(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程 ,圆心 ,半径为r;
(2)一般方程
当 时,方程表示圆,此时圆心为, 半径为
当 时,表示一个点; 当 时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,
若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出d,e,f;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:
(1)设直线 ,圆 圆心 到l的距离为 则有
(2)设直线 ,圆 ,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为 ,则有 ; ;
注:如圆心的位置在原点,可使用公式 去解直线与圆相切的问题,其中 表示切点坐标,r表示半径。
(3)过圆上一点的切线方程:
①圆_2+y2=r2,圆上一点为(_0,y0),则过此点的切线方程为 (课本命题).
②圆(_-a)2+(y-b)2=r2,圆上一点为(_0,y0),则过此点的切线方程为(_0-a)(_-a)+(y0-b)(y-b)= r2 (课本命题的推广).
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆 ,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当 时两圆外离,此时有公切线四条;
当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当 时,两圆内切,连心线经过切点,只有一条公切线;
当 时,两圆内含; 当 时,为同心圆。
三、立体几何初步
1、柱、锥、台、球的结构特征
(1) 棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱 或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与_轴平行的线段仍然与_平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:v = ; s =
5、空间点、直线、平面的位置关系
(1)平面
① 平面的概念: a.描述性说明; b.平面是无限伸展的;
② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面bc。
③ 点与平面的关系:点a在平面 内,记作 ;点 不在平面 内,记作
点与直线的关系:点a的直线l上,记作:a∈l; 点a在直线l外,记作a l;
直线与平面的关系:直线l在平面α内,记作l α;直线l不在平面α内,记作l α。
(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)
应用:检验桌面是否平; 判断直线是否在平面内 。 用符号语言表示公理1:
(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据
(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。 符号语言:
公理3的作用:①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
(5)公理4:平行于同一条直线的两条直线互相平行
(6)空间直线与直线之间的位置关系
① 异面直线定义:不同在任何一个平面内的两条直线
② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④ 异面直线所成角:直线a、b是异面直线,经过空间任意一点o,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理
(2)在异面直线所成角定义中,空间一点o是任取的,而和点o的位置无关。
(3)求异面直线所成角步骤:
a、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
b、证明作出的'角即为所求角
c、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:a α a∩α=a a∥α
(9)平面与平面之间的位置关系:平行——没有公共点;α∥β 相交——有一条公共直线。α∩β=b
6、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行 线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
线面平行 线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
7、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
8、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为 。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点o,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为 。
②平面的垂线与平面所成的角:规定为 。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
解题时,注意挖掘题设中两个信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
9、空间直角坐标系
(1)定义:如图, 是单位正方体.以a为原点,分别以od,o ,ob的方向为正方向,
建立三条数轴 。这时建立了一个空间直角坐标系o_yz.
1)o叫做坐标原点 2)_ 轴,y轴,z轴叫做坐标轴. 3)过每两个坐标轴的平面叫做坐标面。
(2)右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为_轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。
(3)任意点坐标表示:空间一点m的坐标可以用有序实数组 来表示,有序实数组 叫做点m在此空间直角坐标系中的坐标,记作 (_叫做点m的横坐标,y叫做点m的纵坐标,z叫做点m的竖坐标)
总结2013年已经到来,小编在此特意收集了有关此频道的文章供读者阅读。
更多频道:
《3.1 随机事件的概率(2)》测试题
一、选择题
1.若事件a发生的概率为p,则p的取值范围是( ).
a. b. c. d.
考查目的:考查概率的重要性质,即任何事件的概率取值范围是0≤p(a)≤1.
答案:d.
解析:由于事件的频数总是小于或等于试验的次数,所以频率在0~1之间,从而任何事件的概率在0~1之间,在每次实验中,必然事件一定发生,因此它的频率是1,从而必然事件的概率为1. 在每次实验中,不可能事件一定不发生,因此它的频率是0.
2.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175cm的概率为( ).
a.0.2 b.0.3 c.0.7 d.0.8
考查目的:考查事件的并(或称事件的和)、对立事件的概念及概率加法公式的理解和掌握情况.
答案:b.
解析:因为必然事件发生的概率是1,所以该同学的身高超过175cm的概率为1-0.2-0.5=0.3.
3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).
a.至少有1个白球,都是红球 b.至少有1个白球,至多有1个红球
c.恰有1个白球,恰有2个白球 d.至多有1个白球,都是红球
考查目的:考查互斥事件、对立事件的概念、意义及其区别和联系.
答案:c.
解析:互斥事件:在同一试验中不可能同时发生的两个事件叫互斥事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生. 用a,b,c,d分别表示2个红球,2个黑球,任取2球,共有6种可能的结果,分别是:ab;ac;ad;bc;bd;cd.选择项 c中恰有1个白球,包括ac;ad;bc;bd,恰有2个白球,包括cd,故恰有1个白球,恰有2个白球互斥而不对立.
二、填空题
4.从一副混合后的扑克牌(52张,去掉大、小王)中随机抽取1张,事件a为“抽得红桃k”,事件b为“抽得为黑桃”,则概率p(a∪b)的值是 .(结果用最简分数表示)
考查目的:考查事件的并(或称事件的和)的概率公式.
答案:.
解析:一副扑克中有1张红桃k,13张黑桃,事件a与事件b为互斥事件,
5.第16届亚运会于2010年11月12日在中国广州举行,运动会期间有来自a大学2名大学生和b大学4名大学生共计6名志愿者,现从这6名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名a大学志愿者的概率是 .
考查目的:考查交事件(积事件)与事件的并(或称事件的和)的概率公式.
答案:.
解析:(或).
6.甲、乙两队进行足球比赛,若两队战平的概率是,乙队胜的概率是,则甲队胜的概率是 .
考查目的:考查互为对立事件的概念及其中一个事件发生的概率公式.
答案:.
解析:“甲获胜”是“两队战平或乙获胜”的对立事件,∴甲队胜的概率是.
三、解答题
7.某医院派出医生下乡医疗,一天内派出医生人数及其概率如下:
医生人数
1
2
3
4
5人及以上
概 率
0.1
0.16
0.3
0.2
0.2
0.04
求:
⑴派出医生至多2人的概率;
⑵派出医生至少2人的概率.
考查目的:事件的并(或称事件的和)的概率公式的应用.
答案:⑴0.56;⑵0.74.
解析:记事件a为“不派出医生”,事件b为“派出1名医生”,事件c为“派出2名医生”,事件d为“派出3名医生”,事件e为“派出4名医生”,事件f为“派出不少于5名医生”,则事件a、b、c、d、e、f彼此互斥,且p(a)=0.1,p(b)=0.16,p(c)=0.3,p(d)=0.2,p(e)=0.2,p(f)=0.04.
⑴“派出医生至多2人”的概率为:p(a+b+c)=p(a)+p(b)+p(c)=0.1+0.16+0.3=0.56;
⑵“派出医生至少2人”的概率为:p(c+d+e+f)=p(c)+p(d)+p(e)+p(f)=0.3+0.2+0.2+0.04=0.74.
另解:1-p(a+b)=1-0.1-0.16=0.74.
8.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?
考查目的:考查事件的并(或称事件的和)的概率公式与方程组的简单应用.
答案:,,.
解析:设事件a、b、c、d分别表示“任取一球,得到红球、任取一球,得到黑球、任取一球,得到黄球、任取一球,得到绿球”,则由已知得,,
,,解得p(b)=,p(c)=,p(d)=,故得到黑球、黄球、绿球的概率分别是,,.
高考数学备考:第一轮复习总体方案
摘要小编为大家整理了第一轮复习总体方案,希望高三的同学们好好复习,备战高考,成功是属于你们的。
一、全力夯实双基,保证驾轻就熟
目前高考数学试卷,基础知识和基本方法的考查占80%左右的份量,即使是创新题或能力题也是建立在双基之上,只有脚踏实地、一丝不苟地巩固双基,才能占领高考阵地。
教材是,把握了教材,也就切中了要害。不仅要深刻理解教材中的知识,更要关注教材中解决问题的思想方法,还要全面把握知识体系,保证:⑴不 掌握不放过。对照《考试说明》,确定考试范围,认真阅读和理解教材中相关内容,包括每个概念、每个例题、每个注释、每个图形,准确理解和记忆知识点,不留 空白和隐患。⑵胸无全书不放过,在掌握知识点的基础上,根据知识的内在联系,构建知识网络,把书学得“由厚变薄”。不防从课本的章节目录入手,进行串联, 形成体系。⑶有疑难不放过。为巩固复习效果,发展思维能力,适量的练习是必要的,练习中遇到困难也在所难免,必须找到问题的症结在那里,对照教材,彻底扫 除障碍。回归教材、吃透课本,千万不能眼高手低哟。
二、重视错题病例,实时忘羊补牢
错题病例也是财富,它有时暴露我们的知识缺陷,有时暴露我们的思维不足,有时暴露我们方法的不当,毛病暴露出来了,也就有治疗的方向,提供了纠错的机会。
由于题海战术的影响,许多同学,拼命做题,期望以多取胜,但常常事与愿违,不见提高,走访了一些同学,普遍觉得困惑他们的是有些错误很顽固,订正过了,评讲过了,还是重蹈覆辙。原因是没有重视错误,或没有诊断出错因,没有收到纠错的效果。
建议:建立错题集,特别是那些概念理解不深刻、知识记忆失误、思维不够严谨、方法使用不当等典型错误收集成册,并加以评注,指出错误原因,经常 翻阅,常常提醒,警钟长鸣,以绝后患。注意收集错题也有个度的问题,对于那些一时粗心的偶然失误,或一时情绪波动而产生的失误应另作他论。
三、加强毅力训练,做到持之以恒
毅力比热情更重要。进入高三,同学们都雄心勃勃。但由于各种因素的影响,有的同学能够坚持不懈,平步青云。有的同学松弛下来,形成知识或方法上的梗阻。影响情绪和信心。阻碍前进的步伐。训练毅力刻不容缓!
计划明确,并坚决执行,不寻找借口,做到“今日事今日毕”,决不拖到明天做今天的事,练习也要限时完成,一个小时完成的,决不拖成一个半小时完 成,否则将影响后续的学习和生活。任何一门学科,只要三天不接触,拿到题目时,将会觉得入手不顺,思维不畅,效率不高且易出错,若5天不训练将会不进而 退。所以,建议各个学科每天都要有所巩固,根据具体情况哪怕份量轻些也行。遇到困难应及时解决,不能积累,否则会打击信心,丧失斗志。
总结第一轮复习总体方案就为大家整理到这里了,希望大家在高三期间好好复习,为高考做准备,大家加油。
浏览了本文的同学也浏览了:
高考数学备考:不等式数列口诀
摘要高三的同学们正在第一轮的复习阶段,小编为同学们整理了不等式数列口诀,供大家参考,大家要好好复习哦。
数列
等差等比两数列,通项公式n项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。
不等式
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
总结不等式数列口诀就为大家整理到这里了,希望大家在高三期间好好复习,为高考做准备,大家加油。
浏览了本文的同学也浏览了:
高中数学学习方法之良好的学习习惯
高中数学学习方法之良好的学习习惯
良好的学习习惯包括制定学习计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
高中理科数学主要失分细节
对于理科学生而言,数学一般是强项,但越是强项的科目也就越容易大意。那么,根据理科生的实际特点
,高考数学应该怎复习呢?下面来听一听老师的建议吧!
无论一轮复习还是二轮复习都应该将重点放在基础知识、基本技能的训练上,尤其是计算能力的培养。
回想这几年的高考情况,以下是考生容易失分的三个方面。
第二,审题不仔细。不少考生审题时,只看到了部分条件,例如f(_)≤0,有的学生就会当成f(_)<0,这
样一来,全部错误。从往年的情况看,有的考生因为粗心丢掉了10多分。
第一,步骤不完整。从这几年看,高考答案的步骤非常详细,而有些考生虽然会做,最后的结果也对,但
是缺少中间步骤,这样很容易失分。
第三,答题时间安排不合理。数学选择题做题时间一般是2分钟,曾有一位女生,学习成绩非常好,考试
中遇到一道不会做的题,耽误了15分钟,题是做出来了,可当她看到别的同学已经开始做解答题时,慌了,结
果考得一塌糊涂。
复习中,学生要提炼高考热点,查漏补缺,针对易错的地方加强练习,熟练掌握解决中低档题目的方法
。在此,提醒考生,千万别排斥高频率的模拟测试,它能帮助学生掌握答题的节奏、技巧,稳定心理状态,提
高动手能力。
针对这些问题,特别提醒考生,考试中一定要规范答题,遇到不会做的题目时先放一放,此外就是一定要
南昌市高中新课程训练题(不等式2)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则下列不等式成立的是( c )
a.? b. c. d.
2.集合、,若是的充分条件,则b的取值范围可以是 ( )
a. b. c. d.
3.不等式( )
a.(0,2) b.(2,+∞) c. d.
4.设,函数则使的_的取值范围是( )
a. b. c. d.
5.若2-m与|m|-3异号,则m的取值范围是 ( )
a. m>3 b.-3<3 高中化学 c.2<3 d.-3<2 m=''>3
6.设是函数的反函数,则使成立的_的取值范围为( )
a. b. c. d.
7.不等式的解集不是空集,则实数a的取值范围是( )
a. b. c. d.
8.设f(_)= 则不等式f(_)>2的解集为 ( )
a.(1,2)(3,+∞) b.(,+∞)
c.(1,2) ( ,+∞) d.(1,2)
9.a,b,u都是正实数,且a,b满足,则使得a+b≥u恒成立的u的取值范围是( )
a.(0,16) b.(0,12) c.(0,10) d.(0,8)
10.设表示不大于_的最大整数,如:[]=3,[—1.2]=-2,[0.5]=0,则使( )
a. b. c. d.
11.关于_的不等式_|_-a|≥2a2(a( )
a. b. c. d.r
12.在r上定义运算,若不等式成立,则( )
a. b. c. d.
二、填空题:本大题共4小题,每小题4分,共16分。请把答案填在答题卡上。
13.某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则 _________吨.
14.若不等式 的解集为,则a+b= 。
15.对a,br,记ma_|a,b|=函数f(_)=ma_||_+1|,|_-2||(_r)的最小值是 .
16.关于,则实数k的值等于 。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.已知条件p:|5_-1|>a和条件,请选取适当的实数a的值,分别利用所给的两个条件作为a、b构造命题:“若a则b”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.
18.解关于的不等式
19.已知函数有两个实根为
(1)求函数;
(2)设
20.已知函数的图象与_、y轴分别相交于点a、b、(1)求;
(2)当
21.已知:在上是减函数,解关于的不等式:
22.已知函数为奇函数,,且不等式的解集是。
(1)求的值;
(2)是否存在实数使不等式对一切成立?若存在,求出的取值范围;若不存在,请说明理由。
参考答案
一、选择题
c d c ad,a c c a c ,b c
二、填空题
13.20 14.-2
15. 16.
三、解答题
17.解:已知条件即,或,∴,或,
已知条件即,∴,或;
令,则即,或,此时必有成立,反之不然.
故可以选取的一个实数是,a为,b为,对应的命题是若则,
由以上过程可知这一命题的原命题为真命题,但它的逆命题为假命题.
18.解:原不等式可化为:
①当时,原不等式的解集为
②当时,原不等式的解集为
③当时,原不等式的解集为
④当时,原不等式的解集为
⑤当时,原不等式的解集为
⑥当时,原不等式的解集为
19.解:(1)
1
2
3
20.
21. 解:由得
由
不等式的解集为
22.解:(1)是奇函数对定义域内一切都成立b=0,从而。又,再由,得或,所以。
此时,在上是增函数,注意到,则必有,即,所以,综上:;
(2)由(1),,它在上均为增函数,而所以的值域为,符合题设的实数应满足,即,故符合题设的实数不存在。
导语高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。今天为各位同学整理了《高一年级数学必修一知识点总结》,希望对您的学习有所帮助!
1.高一年级数学必修一知识点总结
定义:
形如y=_^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当_为不同的数值时,幂函数的值域的不同情况如下:在_大于0时,函数的值域总是大于0的实数。在_小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则_^(p/q)=q次根号(_的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则_=1/(_^k),显然_≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到_所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于_>0,则a可以是任意实数;
排除了为0这种可能,即对于_<0和_>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。
2.高一年级数学必修一知识点总结
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
3.高一年级数学必修一知识点总结
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行——没有公共点;两个平面相交——有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
4.高一年级数学必修一知识点总结
1.“包含”关系—子集
注意:有两种可能
(1)a是b的一部分;
(2)a与b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
2.“相等”关系:a=b(5≥5,且5≤5,则5=5)
实例:设a={_|_2-1=0}b={-1,1}“元素相同则两集合相等”
即:
①任何一个集合是它本身的子集。a(a
②真子集:如果a(b,且a(b那就说集合a是集合b的真子集,记作ab(或ba)
③如果a(b,b(c,那么a(c
④如果a(b同时b(a那么a=b
3.不含任何元素的集合叫做空集,记为φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
5.高一年级数学必修一知识点总结
集合的运算
1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.
记作ab(读作a交b),即ab={_|_a,且_b}.
2、并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:ab(读作a并b),即ab={_|_a,或_b}.
3、交集与并集的性质:aa=a,a=,ab=ba,aa=a,
a=a,ab=ba.
4、全集与补集
(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.
(3)性质:
⑴cu(cua)=a
⑵(cua)
⑶(cua)a=u
高三数学必修一知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:
(3)德摩根定律:
4. 你会用补集思想解决问题吗?(排除法、间接法)
的取值范围。
6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:a→b,是否注意到a中元素的任意性和b中与之对应元素的性,哪几种对应能构成映射?
(一对一,多对一,允许b中有元素无原象。)
8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9. 求函数的定义域有哪些常见类型?
10. 如何求复合函数的定义域?
义域是_____________。
11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解_;②互换_、y;③注明定义域)
13. 反函数的性质有哪些?
①互为反函数的图象关于直线y=_对称;
②保存了原来函数的单调性、奇函数性;
14. 如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15. 如何利用导数判断函数的单调性?
值是( )
a. 0b. 1c. 2d. 3
∴a的值为3)
16. 函数f(_)具有奇偶性的必要(非充分)条件是什么?
(f(_)定义域关于原点对称)
注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17. 你熟悉周期函数的定义吗?
函数,t是一个周期。)
12位用户关注
22位用户关注
68位用户关注
42位用户关注
63位用户关注
60位用户关注
69位用户关注