工作总结 > 总结大全 > 总结范文
栏目

平方根总结(八篇)

发布时间:2023-06-05 热度:32

平方根总结

【第1篇 八年级上册数学算术平方根知识点总结

八年级上册数学算术平方根知识点总结

算术平方根的双重非负性

1.a中a≧0

2.a≧0

算术平方根产生 根号(即算术平方根)的产生源于正方形的对角线长度根号二,这个 根号二的发现 一度引起了毕达哥拉斯学派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),世界的一切事物都可以用有理数代表。

对于这个无理数根号二,最终人们选取了用根号来表示

算术平方根举例

9的平方根为9的算术平方根为3,正数的平方根都是前面加,算术平方根全部都是正数。

算术平方根辨析

算术平方根和平方根是大家学习实数接触最多的概念,两者密不可分。可对于初学者来说是对孪生杀手,很容易在解题过程中产生错误。算术平方根和平方根到底有哪些区别与联系呢?

一、 两者区别

1、定义不同:⑴一般地,如果一个正数_的'平方等于a,即_2=a,那么这个正数_叫做a的算术平方根(arithmetic square root)。⑵一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root)。这就是说,如果_2=a,那么_叫做a的平方根。

2、表示方法不同:⑴a的算术平方根记为a ,读作根号a,a叫做被开方数(radicand)。⑵a的平方根记为a,读作正负根号a,其中a叫做被开方数。

3、个数不同:从形式上看,二者的符号主体相似,但是一个数的平方根要在其算术平方根的前面写上。这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。零只有一个平方根

二、 两者联系

1、前提条件相同:算术平方根和平方根存在的前提条件都是只有非负数才有算术平方根和平方根。

2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

3、0的算术平方根和平方根相同,都是0。

【第2篇 人教版初一奥数平方根知识点总结

一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

如果一个正数_的平方等于a,即_2=a,那么这个正数_叫做a的算术平方根。a的算术平方根记为

,读作“根号a”,a叫做被开方数。

规定:0的平方根是0。

负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。例如:-1的平方根为±1i,-9的平方根为±3i。

平方根包含了算术平方根,算术平方根是平方根中的一种。

任何复数都有平方根。

算术平方根为:√a=a(a为非负数)

被开方数是乘方运算里的幂。

求平方根可通过逆运算平方来求。

开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。

若_的平方等于a,那么_就叫做a的平方根,即±√a=±_(a为非负数)

性质

与平方根的关系

正数的平方根有两个,它们为相反数,其中正数的平方根,就是这个数的算术平方根。

产生

根号(即算术平方根)的产生源于正方形的对角线长度“根号二”,这个 “根号二”的发现 一度引起了毕达哥拉斯学派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),万物皆数(也就是说世界上所有的事物都可以用数来表示)。

对于这个无理数“根号二”,最终人们选取了用根号来表示。

举例

9的平方根为±3 ;9的算术平方根为3,正数的平方根都是前面加±,算术平方根全部都是非负数(0也在内,

辨析

算术平方根和平方根是大家学习实数接触最多的概念,两者密不可分。可对于初学者来说是对“孪生杀手”,很容易在解题过程中产生错误。算术平方根和平方根到底有哪些区别与联系呢?

区别

1、定义不同:

⑴绝大部分地,如果一个正数_的平方等于a,即_2=a,那么这个正数_叫做a的算术平方根(arithmetic square root)。

⑵一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root)。这就是说, 如果_2=a,那么_叫做a的平方根。

2、表示方法不同:

⑴a的算术平方根记为

读作“根号a”,a叫做被开方数(radicand)。

⑵a的平方根记为

,读作“正负根号a”,其中a叫做被开方数。

3、个数不同:从形式上看,二者的符号主体相似,但是一个数的平方根要在其算术平方根的前面写上“±”。这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。零只有一个平方根。

联系

1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。

2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

3、0的算术平方根和平方根相同,都是0。

【第3篇 关平方根的知识点总结

关于关平方根的知识点总结

平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

中被开方数的取值范围:被开方数a≥0

平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。③负数没有平方根

开平方;求一个数的平方根的运算,叫做开平方。

平方根与算术平方根区别:

1、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

联系

1、二者之间存在着从属关系。2、存在条件相同。3、0的算术平方根与平方根都是0

含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

求正数a的`算术平方根的方法;

完全平方数类型

①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

【第4篇 平方根的知识点总结

平方根的知识点总结

初中频道为您整理了有关平方根的知识点总结:八年级上册数学期中考试复习,希望帮助您提供多想法。和小编一起期待学期的学习吧,加油哦!

平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

中被开方数的取值范围:被开方数a≥0

平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的'平方根是它本身0。③负数没有平方根

开平方;求一个数的平方根的运算,叫做开平方。

平方根与算术平方根区别:

1、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

联系

1、二者之间存在着从属关系。2、存在条件相同。3、0的算术平方根与平方根都是0

含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

求正数a的算术平方根的方法;

完全平方数类型

①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

【第5篇 初中奥数实数算数平方根知识点总结

算术平方根:一般地,如果一个正数_的平方等于a,即,那么这个正数_叫做a的算术平方根(特别规定:0的算术平方根是0)

算术平方根表示法:一个非负数a的算术平方根记作,读作根号a。a叫被开方数。

算术平方根性质:①正数的算术平方根是一个正数。②0的算术平方根是0

③负数没有算术平方根

【第6篇 初中数学平方根知识点总结

初中数学平方根知识点总结

平方根概括

显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

如果一个数的平方等于a,那么这个数叫做a的平方根。0的平方根是0。负数在实数范围内不能开平方,只有在正数范围内,才可以开平方根。例如:-1的平方根为i,-9的平方根为3i。

平方根包含了算术平方根,算术平方根是平方根中的一种。

平方根和算术平方根都只有非负数才有。

被开方数是乘方运算里的幂。

求平方根可通过逆运算平方来求。

开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。

若_的平方等于a,那么_就叫做a的平方根,即√a=_

重点与难点分析

本节重点是平方根和算术平方根的概念.平方根是开方运算的'基础,是引入无理数的准备知识.平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,并且直接影响到二次根式的学习. 算术根的教学不但是本章教学的重点,也是今后数学学习的重点.在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根。

本节难点是平方根与算术平方根的区别于联系.首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同.对于平方根运算不仅数

3.本节主要内容是平方根和算术平方根,注意数字要简单,关键让学生理解概念.另外在文字叙述时注意语言的严谨规范,.

知识归纳:如果一个正数的平方等于a,那么这个正数_叫做a的算术平方根,a叫做被开方数。

【第7篇 七年级奥数平方根知识点总结苏科版

一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

如果一个正数_的平方等于a,即_2=a,那么这个正数_叫做a的算术平方根。a的算术平方根记为

,读作“根号a”,a叫做被开方数。

规定:0的平方根是0。

负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。例如:-1的平方根为±1i,-9的平方根为±3i。

平方根包含了算术平方根,算术平方根是平方根中的一种。

任何复数都有平方根。

算术平方根为:√a=a(a为非负数)

被开方数是乘方运算里的幂。

求平方根可通过逆运算平方来求。

开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。

若_的平方等于a,那么_就叫做a的平方根,即±√a=±_(a为非负数)

性质

与平方根的关系

正数的平方根有两个,它们为相反数,其中正数的平方根,就是这个数的算术平方根。

产生

根号(即算术平方根)的产生源于正方形的对角线长度“根号二”,这个 “根号二”的发现 一度引起了毕达哥拉斯学派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),万物皆数(也就是说世界上所有的事物都可以用数来表示)。

对于这个无理数“根号二”,最终人们选取了用根号来表示。

举例

9的平方根为±3 ;9的算术平方根为3,正数的平方根都是前面加±,算术平方根全部都是非负数(0也在内,

辨析

算术平方根和平方根是大家学习实数接触最多的概念,两者密不可分。可对于初学者来说是对“孪生杀手”,很容易在解题过程中产生错误。算术平方根和平方根到底有哪些区别与联系呢?

区别

1、定义不同:

⑴绝大部分地,如果一个正数_的平方等于a,即_2=a,那么这个正数_叫做a的算术平方根(arithmetic square root)。

⑵一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root)。这就是说, 如果_2=a,那么_叫做a的平方根。

2、表示方法不同:

⑴a的算术平方根记为

读作“根号a”,a叫做被开方数(radicand)。

⑵a的平方根记为

,读作“正负根号a”,其中a叫做被开方数。

3、个数不同:从形式上看,二者的符号主体相似,但是一个数的平方根要在其算术平方根的前面写上“±”。这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。零只有一个平方根。

联系

1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。

2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

3、0的算术平方根和平方根相同,都是0。

【第8篇 数学知识点总结之平方根

数学知识点总结之平方根

初二数学知识点总结之平方根

以下是对平方根知识点的总结内容,同学们认真学习下面的内容。

平方根

正数的平方根有2个,它们互为相反数;

0的平方根是0;

负数没有平方根。

上面对平方根的知识总结学习,希望同学们都能很好的记住上面的知识,相信一定能很好的帮助同学们的学习。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的`构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

《平方根总结(八篇).doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关总结

最新加入范文

分类查询入口

一键复制