> 总结大全 > 教学总结
栏目

2023中考备考:初中数学知识点总结-三角函数(十五篇)

发布时间:2024-02-07 热度:51

2023中考备考:初中数学知识点总结-三角函数

第1篇 2023中考备考:初中数学知识点总结-三角函数 2200字

锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。

正弦(sin)等于对边比斜边;sina=a/c

余弦(cos)等于邻边比斜边;cosa=b/c

正切(tan)等于对边比邻边;tana=a/b

余切(cot)等于邻边比对边;cota=b/a

正割(sec)等于斜边比邻边;seca=c/b

余割(csc)等于斜边比对边。csca=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(a+b) = sinacosb+cosasinb

sin(a-b) = sinacosb-cosasinb ?

cos(a+b) = cosacosb-sinasinb

cos(a-b) = cosacosb+sinasinb

tan(a+b) = (tana+tanb)/(1-tanatanb)

tan(a-b) = (tana-tanb)/(1+tanatanb)

cot(a+b) = (cotacotb-1)/(cotb+cota)

cot(a-b) = (cotacotb+1)/(cotb-cota)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

推导公式:

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

函数名 正弦 余弦 正切 余切 正割 余割

在平面直角坐标系xoy中,从点o引出一条射线op,设旋转角为θ,设op=r,p点的坐标为(x,y)有

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

三角函数万能公式

万能公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tana+tanb+tanc=tanatanbtanc

证:

a+b=π-c

tan(a+b)=tan(π-c)

(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)

整理可得

tana+tanb+tanc=tanatanbtanc

得证

同样可以得证,当x+y+z=nπ(n∈z)时,该关系式也成立

由tana+tanb+tanc=tanatanbtanc可得出以下结论

(5)cotacotb+cotacotc+cotbcotc=1

(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)

(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc

(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc

万能公式为:

设tan(a/2)=t

sina=2t/(1+t^2) (a≠2kπ+π,k∈z)

tana=2t/(1-t^2) (a≠2kπ+π,k∈z)

cosa=(1-t^2)/(1+t^2) (a≠2kπ+π,且a≠kπ+(π/2) k∈z)

就是说sina.tana.cosa都可以用tan(a/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

三角函数关系

倒数关系

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以'上弦、中切、下割;左正、右余、中间1'的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α))

tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α

半角的正弦、余弦和正切公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

万能公式

sinα=2tan(α/2)/(1+tan^2(α/2))

cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

tanα=(2tan(α/2))/(1-tan^2(α/2))

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

诱导公式

诱导公式的本质

所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

常用的诱导公式

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα k∈z

cos(2kπ+α)=cosα k∈z

tan(2kπ+α)=tanα k∈z

cot(2kπ+α)=cotα k∈z

公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

第2篇 初中数学的公式总结 800字

初中数学的公式总结

线段定理公式知识

线段定理:

线段垂直平分线上的点和这条线段两个端点的距离相等

正方形定理公式

正方形的特征:

①正方形的四边相等;

②正方形的四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

正方形的判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

平行四边形定理公式

平行四边形

平行四边形的性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分;

平行四边形的判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

直角三角形定理公式

直角三角形的性质:

①直角三角形的两个锐角互为余角;

②直角三角形斜边上的中线等于斜边的一半;

③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

④直角三角形中30度

角所对的直角边等于斜边的一半;

直角三角形的判定:

①有两个角互余的三角形是直角三角形;

②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。

等腰三角形的性质定理公式

等腰三角形的性质:

①等腰三角形的两个底角相等;

②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

三角形定理公式

三角形

三角形的.三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于180度;

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

第3篇 初中数学多项式的运算的知识点总结 1000字

初中数学关于多项式的四则运算的知识点总结

1 单项式与多项式

仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式

单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数

当一个单项式的系数是1或-1时,“1”通常省略不写

一个单项式中,所有字母的指数的和叫做这个单项式的次数

如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项

12 多项式

有有限个单项式的代数和组成的式子,叫做多项式

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项

单项式可以看作是多项式的特例

把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中最高次项的次数,就称为这个多项式的次数

13 多项式的值

任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子

14 多项式的恒等

对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)

性质1 如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)

性质2 如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等

15 一元多项式的根

一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根

2 多项式的加、减法,乘法

21 多项式的加、减法

22 多项式的乘法

单项式相乘,用它们系数作为积的'系数,对于相同的字母因式,则连同它的指数作为积的一个因式

3 多项式的乘法

多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加

23 常用乘法公式

公式i 平方差公式

(a+b)(a-b)=a^2-b^2

两个数的和与这两个数的差的积等于这两个数的平方差

公式ii 完全平方公式

(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

两数(或两式)和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍

4 单项式的除法

两个单项式相除,就是它们的系数、同底数的幂分别相除,而对于那些只在被除式里出现的字母,连同它们的指数一起作为商的因式,对于只在除式里出现的字母,连同它们的指数的相反数一起作为商的因式

一个多项式处以一个单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加

第4篇 初中数学数列的表示知识点总结的内容 1900字

初中数学数列的表示知识点总结的内容

初中数学数列的表示知识点总结

知识要点:数列中的项必须是数,它可以是实数,也可以是复数。

数列表示方法

如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1。

数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。(2)有些数列没有通项公式

如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>;1)

数列递推公式的特点:(1)有些数列的递推公式可以有不同形式,即不唯一。(2)有些数列没有递推公式

有递推公式不一定有通项公式

知识要领总结:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的'原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

第5篇 初中三年级数学知识点总结人教版 550字

1.物体的表面或封闭图形的大小,就是他们的面积。

2.比较两个图形面积的大小,要用统一的面积单位来测量。

3.常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。

4.边长1厘米的正方形面积是1平方厘米。

5.边长1分米的正方形面积是1平方分米。

6.边长1米的正方形面积是1平方米。

7.边长100米的正方形面积是1公顷(10000平方米)。

8.边长1千米(1000米)的正方形面积是1平方千米。

9.测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。

平方千米 公顷 平方米 平方分米 平方厘米

10.长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长

11.正方形的面积=边长×边长

12.长方形的周长=(长+宽)×2 宽 = 周长÷2-长 长 = 周长÷2-宽

13.正方形的周长=边长×4

14.正方形的边长=周长÷4

15.相邻的两个常用的长度单位间的进率是10。

16.相邻的两个常用的面积单位间的进率是100。

17.1平方米=100平方分米 ;1平方分米=100平方厘米 ;

1公顷=10000平方米 ;1平方千米=100公顷(公顷、平方千米这两个土地面积单位间的进率是100。)

注:面积和周长是不能相比较的;分清楚什么时候填长度单位,什么时候填面积单位,填土地面积单位时,比较小的土地面积(如:公园、体育场馆、超市、果园、广场)等一般情况下填公顷;(城市的占地、国家的面积、江河湖海的面积)等一般情况下填平方千米。

面积相等的两个图形,周长不一定相等。

注 意:

周长相等的两个图形,面积不一定相等。

第6篇 最新初中八年级上数学知识总结 950字

人教版最新初中八年级上数学知识总结

第一章一次函数

1函数的定义,函数的定义域、值域、表达式,函数的图像

2一次函数和正比例函数,包括他们的表达式、增减性、图像

3从函数的观点看方程、方程组和不等式

第二章数据的描述

1了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点

条形图特点:

(1)能够显示出每组中的具体数据;

(2)易于比较数据间的差别

扇形图的特点:

(1)用扇形的面积来表示部分在总体中所占的百分比;

(2)易于显示每组数据相对与总数的大小

折线图的特点;

易于显示数据的变化趋势

直方图的特点:

(1)能够显示各组频数分布的情况;

(2)易于显示各组之间频数的差别

2会用各种统计图表示出一些实际的问题

第三章全等三角形

1全等三角形的性质:

全等三角形的对应边、对应角相等

2全等三角形的判定

边边边、边角边、角边角、角角边、直角三角形的hl定理

3角平分线的性质

角平分线上的点到角的两边的距离相等;

到角的两边距离相等的点在角的平分线上。

第四章轴对称

1轴对称图形和关于直线对称的两个图形

2轴对称的性质

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

线段垂直平分线上的点到线段两个端点的距离相等;

到线段两个端点距离相等的点在这条线段的垂直平分线上

3用坐标表示轴对称

点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

4等腰三角形

等腰三角形的两个底角相等;(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)

一个三角形的两个相等的角所对的.边也相等。(等角对等边)

5等边三角形的性质和判定

等边三角形的三个内角都相等,都等于60度;

三个角都相等的三角形是等边三角形;

有一个角是60度的等腰三角形是等边三角形;

推论:

直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。

在三角形中,大角对大边,大边对大角。

第五章整式

1整式定义、同类项及其合并

2整式的加减

3整式的乘法

(1)同底数幂的乘法:

(2)幂的乘方

(3)积的乘方

(4)整式的乘法

4乘法公式

(1)平方差公式

(2)完全平方公式

5整式的除法

(1)同底数幂的除法

(2)整式的除法

6因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

第7篇 初中数学学习方法归纳总结 2450字

相对于小学数学,初中数学学习内容有大幅度增加,课程难度也迅速提高,对学习方法、学习能力的要求自然也更高。同时数学水平的高低,直接影响到物理、化学等学科的学习,不仅如此,初中数学学习的好坏对于高中数学学习的好坏有着至关重要的影响,因此学好初中数学非常的重要。初中数学的学习有其独特的学习方法。

那怎样才能学好初中的数学呢?

1.细心地发掘概念和公式

很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学概念、公式的记忆。记忆是理解的基础。如果你不能将概念、公式烂熟于心,又怎能够在题目中熟练应用呢?

概念是数学的基石,对于每个定义、定理、公式法则,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的。将概念、公式与解题联系起来,以了解它们如何运用在题目中,从而将头脑中学来的概念具体化,加深对知识的理解,达到活学活用。

我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

2.看例题,做习题,要学会总结题型和方法

1)如何看例题、做习题?要想学好数学,必须多看例题,多做习题。我们看例题、做习题,目的是体会定义、定理、公式法则的运用,是学习数学的思想和方法。每一道题,都是针对一个或几个知识点,都会反映出一定的思维方法,即解题的思想方法。每看或做一道题目,都应体会如何应用数学知识,应理清它的思路,掌握它的思维方法。时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时再解这一类的题目时就易如反掌了。有些同学老师讲过的题会做,其它的题就不会做,只会依样画葫芦,题目有些小的变化就干瞪眼,无从下手。原因就在于不明白数学知识是怎么应用的,解题时是怎么思考的。

2)学会归纳和总结。题海无边,总也做不完。数学题目是无限的,但数学的思想和方法却是有限的。要想将题目越做越少,就要学会归纳和总结。

对做过的习题进行归纳和总结,再现思维活动经过,分析想法的产生及错因的由来。要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法。做了哪些习题?用到什么概念,定理或公式?用到什么解题方法?属于什么类型?哪些是自己能熟练解决的,哪些还有困难?会做的以后少做或不做,有困难的不会的要多做,重点做。

当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。

我们的建议是:看例题、做习题一是要体会定义、定理、公式法则的运用,从而记忆和巩固所学的定义、定理、法则、公式,二是要总结归纳解题的思路和方法,将题目越做越少。

3.收集自己的典型错误和不会的题目

同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。对于每次做错的题目,要分清楚是做错的还是不会做,对做错的,要分析原因,总结当时自己是怎么想的?错在哪里了?那么正确的思路又是什么?不会做的,要请教,然后把它记在本子上,并及时复习相关的内容。我们之所以建议大家收集自己的典型错误和不会的题目,一方面是可以查漏补缺,及时复习相关内容;另一方面,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。从而认清自己学习的状况。

我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

4.就不懂的问题,积极提问、讨论

不提倡不懂就问,一发现现问题不经思考就问,不是好习惯。经过自己反复思考仍不能理解或解决的问题,应积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。

讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。

我们的建议是:“勤学”是基础,“好问”是关键。

5.注重实战(考试)经验的培养

考试是一种能力,也可以通过平时训练来获得。把“做作业”当成考试,平时做作业时,要不看书,不请教,在规定时间内独立完成;解题要规范,有条理,演算要清楚,整齐,避免出现计算错误。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。

我们的建议是:把“做作业”当成考试,把“考试”当成做作业。

良好的学习方法的掌握,学习习惯的养成,都必须在平时每天的学习实践中加以训练和坚持。我们建议:家长应该变对考试成绩的期待为对整个学习过程(预习,听课,复习,做作业)具体的指导、监督和管理,逐步让学生掌握有效的学习方法,养成良好的学习习惯。从而提升学习能力,获得优良的成绩。

下面附上初中数学的知识结构体系图,希望这张图片可以帮助大家复习,这篇文章可以帮助初中的你们找到学习的方法。

第8篇 初中数学知识点一元一次方程总结 1450字

初中数学知识点一元一次方程总结

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程。

2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质

(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么a±c=b±c

(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则

1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1.去分母(方程两边同乘各分母的最小公倍数)

2.去括号(按去括号法则和分配律)

3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4.合并(把方程化成ax=b(a≠0)形式)

5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。

六、用方程思想解决实际问题的.一般步骤

1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

2.设:设未知数(可分直接设法,间接设法)。

3.列:根据题意列方程。

4.解:解出所列方程。

5.检:检验所求的解是否符合题意。

6.答:写出答案(有单位要注明答案)。

七、有关常用应用类型题及各量之间的关系

1、和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

2、等积变形问题:

“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积。

3、劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出。

(2)只有调入没有调出,调入部分变化,其余不变。

(3)只有调出没有调入,调出部分变化,其余不变。

4、数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

5、工程问题:

工程问题中的三个量及其关系为:工作总量=工作效率×工作时间

6、行程问题:

(1)行程问题中的三个基本量及其关系:路程=速度×时间。

(2)基本类型有

①相遇问题;

②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

7、商品销售问题

有关关系式:

商品利润=商品售价—商品进价=商品标价×折扣率—商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价×折扣率

8、储蓄问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

(2)利息=本金×利率×期数

本息和=本金+利息

利息税=利息×税率(20%)

第9篇 初中数学平行公理的知识点总结 1300字

初中数学平行公理的知识点总结

平行公理

1、同位角相等,两直线平行

2、内错角相等,两直线平行

3、同旁内角互补,两直线平行

4、两直线平行,同位角相等

5、两直线平行,内错角相等

6、两直线平行,同旁内角互补

中考知识点总结:经过直线外一点,有且只有一条直线与这条直线平行。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的.讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

第10篇 初中数学教研组学期工作总结 1400字

紧张而又繁忙的一学期工作就要结束了,数学组的每位教师都是以认真、务实的态度忙于期未的收尾工作。

中学数学课堂教学如何实施素质教育,是当前数学教学研究的重要课题。“面向全体学生,引发学生的内在机制,使学生生动活泼自主地进行学习,在思维潜力、创新潜力等方面都得到发展”早已为大家达成共识,我们组从三方面改变教学理念:(1)改变传统的教育观念,提高对学生素质培养的要求;(2)注意研究有效的教学方法,培养学生的潜力;(3)有意识地培养学生主动学习的愿望。

我们的具体作法如下:

一、群众备课、资源共享

为了节省老师的备课时间,发挥每位老师的特点,同仁之间互相学习、互相借鉴,本学期数学组采用了群众分节备课,每位老师在这个基础上,根据自己的特点、风格再进行修改,在教学上体现出自己的个性,教案力求贴合下列要求:

1、教学目标应有:认知目标、技能目标和情感教育目标,确定数学思想及数学方法的培养目标,提高学生的思维潜力及创新潜力,透过引导与规范管理,使学生养成良好的学习习惯。

2、教学设计应以课程标准为准绳,根据教学目标和本校的学生特点安排教材,要深入理解教材,突出重点、分散难点,对不同层次的学生要有不同层次的教学资料及不同的教法。

3、课堂模式百花齐放。

二、认真上好每一节课

为了在课堂教学中落实素质教育,从发展的要求看,就不仅仅要让学生“学会”数学,更重要的是让学生“会学”数学,具备在未来工作中科学地提出问题、探索问题、创造性地解决问题的潜力,所以我们要求老师在教学过程中要时时思考对学生进行学习指导,本学期重点是学习方法的指导,指导的要点是怎样听课、怎样做作业和怎样复习,为了能更好地体现学生的主体地位,要求教师引导学生参与教学活动,务必给学生自主参与活动的时间和空间,为了能上好每一节课,根据我校硬件的优势、优化教学手段、提高教学效果,马秋梅老师一学期制作了23个课件,是全校之最,为了上好一节课,新教师刘舒曼、许*都主动向老教师请教、取经,这两位教师进步的都很快。

三、课后辅导

批改作业是教学工作中的一件繁重的工作,每一天都要用两个小时的时间来批改一百多本作业,采用的形式是统批、面批、学生互批、讲评等,每位老师还都利用午后午休及下班后的时间针对学习成绩差、有困难的学生进行个别辅导,个性是刘舒曼还利用休息日给学生义务补课,记得快邻近期未考试的一天,我发现吃午后饭最晚的几位老师中有六名是数学老师,他们的工作态度令人钦佩。

四、课堂教学案例研究

教学案例是改善教学的抓手,是教师专业成长的阶梯,是理论联系实际的中介,本学期以备课组为单位,做一个教学的案例研究,六年级的课题是《弧长》、七年级的课题是《一元一次不等式的性质》,每个案例都是按“三实践、两反思”的原则进行的。透过这个活动,让全组教师都投入到教研活动之中。透过这次活动一方面要学习别人的成功经验;另一方面要结合自己的教学实践,积累反思的素材,调整、优化自己的教学决策和行为,提高课堂教学效益。

下学期工作的设想:

1、全组走出去听课(听上海市区名手的课或青浦区名手的课);

2、利用本校的资源---信息技术,每位老师上一节录像课,透过自己观察自己的录像课查找差距和不足;

3、每个备课组搞一个课例研究;

4、青年教师多上公开课,机会留给年青人;

5、七年级搞学生错题档案袋、好题档案袋,目的是有针对性提高学生的成绩;

6、休息日开提高班、补差兴趣班等。

第11篇 初中数学频率与概率知识点总结 1850字

关于初中数学频率与概率知识点总结

初中数学频率与概率知识点总结

下面是对频率与概率知识点的学习,同学们好好学习下面的知识点。

频率与概率:

(1)频率=频数/总数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。

(2)概率

①如果用p表示一个事件a发生的概率,则0≤p(a)≤1;

p(必然事件)=1;p(不可能事件)=0;

②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。

③大量的重复实验时频率可视为事件发生概率的估计值;

通过上面对频率与概率知识点的总结,相信同学们能够熟练的掌握此知识点,希望同学们能熟练的运用。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的'两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

第12篇 初中数学直角三角形的性质知识点总结 450字

初中数学直角三角形的性质知识点总结

直角三角形知识:顾名思义,有一个角为90°的三角形,叫做直角三角形。

直角三角形性质定理

直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:

性质1:直角三角形两直角边的平方和等于斜边的平方。如图,∠bac=90°,则ab+ac=bc(勾股定理)

性质2:在直角三角形中,两个锐角互余。如图,若∠bac=90°,则∠b+∠c=90°

性质3:在直角三角形中,斜边上的`中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径r=c/2)。

性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

射影定理如下:

(1)(ad)=bd·dc。

(2)(ab)=bd·bc。

(3)(ac)=cd·bc。

性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。

性质7:1/ab2+1/ac2=1/ad2

性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

知识延伸:两个锐角互余的三角形是直角三角形。

第13篇 初中数学知识点总结之直角坐标系与点的位置 1700字

关于初中数学知识点总结之直角坐标系与点的位置

直角坐标系与点的位置

1.直角坐标系中,点a(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0.

3.直角坐标系中,点a(1,1)在第一象限.

4.直角坐标系中,点a(-2,3)在第四象限.

5.直角坐标系中,点a(-2,1)在第二象限.

通过上面的讲解,相信同学们可以很好对直角坐标系与点的位置知识点的掌握,希望同学们做的很好。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的'坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

第14篇 初中数学轴对称的性质定理知识点总结 450字

初中数学轴对称的性质定理知识点总结

其实在建筑中为了美观,我们会使用轴对称,比如天安门,对称就显的美观漂亮。

轴对称的性质定理

性质

1.对称轴是一条直线。

2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的.距离相等。

3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线

6.图形对称。

定理及其逆定理

定理1: 关于某条直线对称的两个图形是全等形。(全等形不一定关于某条直线对称)

定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形。

第15篇 初中数学棱柱的基础知识点归纳总结 650字

初中数学棱柱的基础知识点归纳总结

初中数学棱柱的基础知识点归纳

棱柱是多面体中最简单的一种,我们常见的一些物体,例如三棱镜、方砖以及螺杆的头部,它们都呈棱柱的形状。

棱柱的基础知识

棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个多边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱用表示底面各顶点的字母来表示。

棱柱的底面:棱柱中两个互相平行的面,叫做棱柱的底面。

棱柱的侧面:棱柱中除两个底面以外的其余各个面都叫做棱柱的侧面。

棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱。

棱柱的形成方式

棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。

棱柱的顶点

在棱柱中,侧面与底面的公共顶点叫做棱柱的顶点。

棱柱的对角线:棱柱中不在表面同一平面上的两个顶点的连线叫做棱柱的对角线。

棱柱的.高:棱柱的两个底面的距离叫做棱柱的高。

棱柱的对角面:棱柱中过不相邻的两条侧棱的截面叫做棱柱的对角面。

棱柱的分类

斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。

直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。

正棱柱:底面是正多边形的直棱柱叫做正棱柱。

平行六面体:底面是平行四边形的棱柱。

直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。

长方体:底面是矩形的直棱柱叫做长方体。

我们学习的棱柱也包括了斜棱柱、直棱柱、正棱柱,连长方体也是棱柱的一种。

《2023中考备考:初中数学知识点总结-三角函数(十五篇).doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关总结

最新加入范文

分类查询入口

一键复制