工作总结 > 总结大全 > 小学总结
栏目

小学奥数总结(十六篇)

发布时间:2023-04-10 热度:25

小学奥数总结

【第1篇 小学奥数知识点总结:逻辑推理

逻辑推理

基本方法简介:

①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如a和b两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

【第2篇 六年级小学奥数几何模块知识点总结

导语芬芳袭人花枝俏,喜气盈门捷报到。心花怒放看通知,梦想实现今日事,喜笑颜开忆往昔,勤学苦读最美丽。在学习中学会复习,在运用中培养能力,在总结中不断提高。以下是为大家整理的,六年级小学奥数几何模块知识点,包括平面直线几何图形、平面曲线几何图形、立体几何图形等相关知识点总结。 供您查阅。

【第3篇 小学奥数知识点总结:分数与百分数的应用

分数与百分数的应用

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:a、分量发生变化,总量不变。b、总量发生变化,但其中有的分量不变。c、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

【第4篇 小学奥数数列规律填数规律总结

1、顺等差数列,前一个数减去后一个数的差相等。例如:1,3,5,7,9,…

逆等差数列,后一个数减去前一个数的差相等。例如:10,8,6,4,2…;

2、顺等比数列,即前一个数除以后一个数的商相等。例如:2,4,8,16,32…;

逆等比数列,即后一个数除以前一个数的商相等。例如:1024,512,256,128,…;

3、兔子数列,即单数序号的数字与双数序号的数分别形成规律。

例如8,15,10,13,12,11,(14),(9)这里8,10,12,14成规律,15,13,12,11,9成规律;

4、质数数列规律,例如:2,3,5,7,11,(13),(17)....这些数学都为质数;

注意:一般考试只有以下一种情况,而且容易出现到小升初考试,要特别注意。

5、“平方数列”、“立方数列”等,

例如:平方数列:1、4、9、16、27、64、125、…

立方数列:1、8、27、64、81、256、625、…

6、相邻数字差呈现规律。

数字之间差呈现等差数列,例如:1、3、7、13、21、31、43、…

数字之间差呈现等比数列,例如:1、3、7、15、31、63、…

7、多个数字间呈现规律,(本题考查较少)

裴波那契数列,即任意连续两个数字之和等于第三个数字,

例如:1、1、2、3、5、8、13、21、34、…

任意连续三个数字之和等于第四个数字,

例如:1、1、1、3、5、9、17、31、57、105、…

【第5篇 小学奥数关于数论知识点的总结

1. 奇偶性问题

奇+奇=偶 奇×奇=奇

奇+偶=奇 奇×偶=偶

偶+偶=偶 偶×偶=偶

2. 位值原则

形如:abc =100a+10b+c

3. 数的整除特征:

整除数特征

2 末尾是0、2、4、6、8

3 各数位上数字的和是3的倍数

5 末尾是0或5

9 各数位上数字的和是9的倍数

11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

4和25 末两位数是4(或25)的倍数

8和125 末三位数是8(或125)的倍数

7、11、13 末三位数与前几位数的差是7(或11或13)的倍数

4. 整除性质

① 如果c|a、c|b,那么c|(a b)。

② 如果bc|a,那么b|a,c|a。

③ 如果b|a,c|a,且(b,c)=1,那么bc|a。

④ 如果c|b,b|a,那么c|a.

⑤ a个连续自然数中必恰有一个数能被a整除。

5. 带余除法

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r

【第6篇 小学奥数知识点总结之工程问题

工程问题

基本公式:

①工作总量=工作效率×工作时间

②工作效率=工作总量÷工作时间

③工作时间=工作总量÷工作效率

基本思路:

①假设工作总量为“1”(和总工作量无关);

②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

关键问题:确定工作量、工作时间、工作效率间的两两对应关系。

经验简评:合久必分,分久必合。

【第7篇 小学奥数知识点总结:牛吃草问题

牛吃草问题

基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;

关键问题:确定两个不变的量。

基本公式:

生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);

总草量=较长时间×长时间牛头数-较长时间×生长量;

【第8篇 小学奥数知识点总结之分数大小的比较

分数大小的比较

基本方法:

①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。

②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。

③基准数法:确定一个标准,使所有的分数都和它进行比较。

④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。

⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)

⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。

⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。

⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。

⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。

⑩基准数比较法:确定一个基准数,每一个数与基准数比较。

【第9篇 小学奥数知识点总结:余数、同余与周期

余数、同余与周期

一、同余的定义:

①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(modm),读作a同余于b模m。

二、同余的性质:

①自身性:a≡a(modm);

②对称性:若a≡b(modm),则b≡a(modm);

③传递性:若a≡b(modm),b≡c(modm),则a≡c(modm);

④和差性:若a≡b(modm),c≡d(modm),则a+c≡b+d(modm),a-c≡b-d(modm);

⑤相乘性:若a≡b(modm),c≡d(modm),则a×c≡b×d(modm);

⑥乘方性:若a≡b(modm),则an≡bn(modm);

⑦同倍性:若a≡b(modm),整数c,则a×c≡b×c(modm×c);

三、关于乘方的预备知识:

①若a=a×b,则ma=ma×b=(ma)b

②若b=c+d则mb=mc+d=mc×md

四、被3、9、11除后的余数特征:

①一个自然数m,n表示m的各个数位上数字的和,则m≡n(mod9)或(mod3);

②一个自然数m,_表示m的各个奇数位上数字的和,y表示m的各个偶数数位上数字的和,则m≡y-_或m≡11-(_-y)(mod11);

五、费尔马小定理:

如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(modp)。

【第10篇 小学奥数数论质数与合数问题考点总结

小学奥数数论质数与合数问题考点解析:

某个质数与6、8、12、14之和都仍然是质数,一共有1个满足上述条件的质数.

考点:质数与合数问题.

分析:个位数的质数是2、3、5、7、9,大于10的质数的个位数一个不是0、2或5,是1、3、7或9;由于6、8、12、14是偶数,则这个质数的个位数一定为奇数,即为1,3,5,7,9.然后将它们分别与6、8、12、14相加进行验证排除即可.

解答:解:6,8,12,14都是偶数,加上的偶数质数2和仍然是偶数,所以不是2.

14加上任何尾数是1的质数,最后的尾数都是5,一定能被5整除.

12加上任何尾数是3的质数,尾数也是5;

8加上任何尾数是7的质数,尾数也是5;

6加上任何尾数是9的质数,尾数也是5.

所以,这个质数的末位一定不是1,3,7,9.

5加上6、8、12、14中任意一个数的末位数都不是5,而末位数是5的质数中,只有5是质数,

因此,只有5能满足条件,即一共有1个满足上述条件的质数.

故答案为:1.点评:明确除2和5以外质数的个位都是1,3,7,9,大于10的个位数是5数一定不是质数这两个规律是完成本题的关键.

【第11篇 小学奥数必须掌握的知识点总结

知识模块一和差倍问题

和差问题和倍问题差倍问题

已知条件几个数的和与差几个数的和与倍数几个数的差与倍数

公式适用范围已知两个数的和,差,倍数关系

公式①(和-差)÷2=较小数

较小数+差=较大数

和-较小数=较大数

②(和+差)÷2=较大数

较大数-差=较小数

和-较大数=较小数

和÷(倍数+1)=小数

小数×倍数=大数

和-小数=大数

差÷(倍数-1)=小数

小数×倍数=大数

小数+差=大数

关键问题求出同一条件下的

和与差和与倍数差与倍数

知识模块二年龄问题的三个基本特征:

①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的;

【第12篇 小学奥数数论问题知识总结:数的整除性规律

数的整除性规律

能被2或5整除的数的特征一个数的末位能被2或5整除,这个数就能被2或5整除

能被3或9整除的数的特征一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。

例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24

3|24,则3|1248621。

又如,372681各位上的数字之和是3+7+2+6+8+1=27

9|27,则9|372681。

能被4或25整除的数的特征一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。

例如,

173824的末两位数为24,4|24,则4|173824。

43586775的末两位数为75,25|75,则25|43586775。

能被8或125整除的数的特征一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。

例如,

32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。

3569824的末三位数为824,8|824,则8|3569824。

214813750的末三位数为750,125|750,则125|214813750。

能被7、11、13整除的数的特征一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。

例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。

又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。

再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。

此外,能被11整除的数的特征,还可以这样叙述:一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。

例如,4239235的奇数位上的数字之和为4+3+2+5=14,偶数位上数字之和为2+9+3=14,二者之差为14-14=0,0÷11=0,即11|0,则11|4239235。

【第13篇 小学奥数公式总结

小学奥数常用公式

1 、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2 、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4 、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 、正方形 c周长 s面积 a边长 周长=边长× 4 c=4a 面积=边长×边长 s=a×a

7 、正方体 v:体积 a:棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a

8、长方形 c周长 s面积 a边长 周长=(长+宽)×2 c=2(a+b) 面积=长×宽 s=ab

9 、长方体 v:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh) (2)体积=长×宽×高 v=abh

10 、三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底三角形底=面积 ×2÷高

11 、平行四边形 s面积 a底 h高 面积=底×高 s=ah

12 、 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2

13、 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 c=∏d=2∏r (2)面积=半径×半径×∏

14 、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径

15、圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数

16、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数

17、和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)

18、差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

19、植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 : 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数

20、盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

21、相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

22、追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间

23、流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2

24、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量

25、利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)

【第14篇 小学奥数数论知识点总结

约数与倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

●公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。

▶公约数的性质:

1.几个数都除以它们的公约数,所得的几个商是互质数。

2.几个数的公约数都是这几个数的约数。

3.几个数的公约数,都是这几个数的公约数的约数。

4.几个数都乘以一个自然数m,所得的积的公约数等于这几个数的公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18的公约数是:6,记作(12,18)=6;

▶求公约数基本方法:

1.分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2.短除法:先找公有的约数,然后相乘。

3.辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的公约数。

●公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;

18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

▶最小公倍数的性质:

1.两个数的任意公倍数都是它们最小公倍数的倍数。

2.两个数公约数与最小公倍数的乘积等于这两个数的乘积。

▶求最小公倍数基本方法:

1.短除法求最小公倍数;2.分解质因数的方法

【第15篇 小学奥数知识点总结:综合行程

综合行程

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

关键问题:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水 速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

【第16篇 小学奥数知识点总结之综合行程

综合行程

基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间

关键问题:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

《小学奥数总结(十六篇).doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关总结

最新加入范文

分类查询入口

一键复制