有关高考数学数列公式的总结
数列的基本概念 等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的'关系
an+1-an=d
an=a1+(n-1)d
a,a,b成等差 2a=a+b
m+n=k+l am+an=ak+al
等比数列 常用求和公式
an=a1qn_1
a,g,b成等比 g2=ab
m+n=k+l aman=akal
不等式
不等式的基本性质 重要不等式
a>b b
a>b,b>c a>c
a>b a+c>b+c
a+b>c a>c-b
a>b,c>d a+c>b+d
a>b,c>0 ac>bc
a>b,c<0 ac
a>b>0,c>d>0 ac
a>b>0 dn>bn(n∈z,n>1)
a>b>0 > (n∈z,n>1)
(a-b)2≥0
a,b∈r a2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b|
证明不等式的基本方法
比较法
(1)要证明不等式a>b(或a
a-b>0(或a-b<0=即可
(2)若b>0,要证a>b,只需证明 ,
要证a
综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法 分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”
1.定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。同样为数列的等比数列的性质与等差数列也有相通之处。
2.数列为等差数列的充要条件是:数列的前n项和s可以写成s=an^2+bn的形式(其中a、b为常数).等差数列练习题
3.性质1:公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
4.性质2:公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
5.性质3:当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
1、顺等差数列,前一个数减去后一个数的差相等。例如:1,3,5,7,9,…
逆等差数列,后一个数减去前一个数的差相等。例如:10,8,6,4,2…;
2、顺等比数列,即前一个数除以后一个数的商相等。例如:2,4,8,16,32…;
逆等比数列,即后一个数除以前一个数的商相等。例如:1024,512,256,128,…;
3、兔子数列,即单数序号的数字与双数序号的数分别形成规律。
例如8,15,10,13,12,11,(14),(9)这里8,10,12,14成规律,15,13,12,11,9成规律;
4、质数数列规律,例如:2,3,5,7,11,(13),(17)....这些数学都为质数;
注意:一般考试只有以下一种情况,而且容易出现到小升初考试,要特别注意。
5、“平方数列”、“立方数列”等,
例如:平方数列:1、4、9、16、27、64、125、…
立方数列:1、8、27、64、81、256、625、…
6、相邻数字差呈现规律。
数字之间差呈现等差数列,例如:1、3、7、13、21、31、43、…
数字之间差呈现等比数列,例如:1、3、7、15、31、63、…
7、多个数字间呈现规律,(本题考查较少)
裴波那契数列,即任意连续两个数字之和等于第三个数字,
例如:1、1、2、3、5、8、13、21、34、…
任意连续三个数字之和等于第四个数字,
例如:1、1、1、3、5、9、17、31、57、105、…
1、等差数列的定义
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
2、等差中项
若a,b,c三个数按这个顺序排列成等差数列,那么b叫a,c的等差中项, a, b, c满足b-a=c-b a,b,c成等差数列的充分必要条件是b=(a+c)/2
1.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
2.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。
3.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
4.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
高二数学等差数列期中知识点的总结概括
数学等差数列期中知识点主要包括等差数列的定义、等差中项、等差数列的通项、等差数列的.前n项和、等差数列的判定方法。其中等差数列的通项、等差数列的前n项和是重点和难点。计算它们,只要先通过方程求出数列的基本量再代进去。
1、等差数列的定义
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
2、等差中项
若a,b,c三个数按这个顺序排列成等差数列,那么b叫a,c的等差中项, a, b, c满足b-a=c-b a,b,c成等差数列的充分必要条件是b=(a+c)/2
3、等差数列的性质
北师大版高二数学等差数列期中知识点总结的内容就是这些,想要复习本节知识点的同学可以进入等差数列能力提升题及解析进行巩固练习。
数列证明方法总结
数列是高中数学十分重要的内容,数列和其它知识(如函数、不等式、解析几何)的联系非常密切。就数列本身而言,无论从解题方法还是题型的规律,应当说都是有所遵循的,下面我们做一些简单的总结。
一、数列综合问题的`解答
1.理解数列的概念,特别注意递推数列,熟练掌握等差数列、等比数列的性质、公式及公式的延伸,应用性质解题,往往可以回避求首项和公差或公比,使问题得到整体解决,能够减少运算量。
2.解决数列综合问题要注意函数思想、分类讨论思想和等价转化思想等,注重数列与函数、方程、不等式、解析几何、导数、平面向量、概率等方面的结合。
3.解决数列应用题时要注意增长率问题。
二、有关数列的定理口诀
等差等比两数列,通项公式n项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换。
取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考。
一算二猜三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化。
关于初中数学数列的概念知识点总结
知识要点:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。
数列的基本概念
数列的函数理解:
①数列可以看作一个定义域为正整数集n_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
数列的一般形式可以写成
a1,a2,a3,…,an,a(n+1),……
简记为{an},
项数有限的数列为“有穷数列”(finite sequence),
项数无限的数列为“无穷数列”(infinite sequence)。
数列的各项都是正数的为正项数列;
从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;
从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;
从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;
各项呈周期性变化的数列叫做周期数列(如三角函数);
各项相等的数列叫做常数列(如:2,2,2,2,2,2,2,2,2)。
通项公式:数列的第n项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。
递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列中项的总数为数列的项数。特别地,数列可以看成以正整数集n_(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。
如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).
并非所有的数列都能写出它的通项公式。例如:π的不同近似值,根据精确的程度,可形成一个数列3,3.1,3.14,3.141,…它没有通项公式。
用符号{an}表示数列,只不过是“借用”集合的`符号,它们之间有本质上的区别:1.集合中的元素是互异的,而数列中的项可以是相同的。2.集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。
知识要领总结:数列中的项必须是数,它可以是实数,也可以是复数。
《数列的概念与简单表示法》知识点总结
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的'次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集n_或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.000 1,…所构成的数列1,1.4,1.41,1.414,1.414 2,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.
4.数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1 2 3 4 5 6 7
项: 4 5 6 7 8 9 10
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集n_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
5.递推数列
一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①
数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1
数学必修五《等比数列的前n项和》知识点总结
一个推导
利用错位相减法推导等比数列的前n项和:
sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qsn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)sn=a1-a1qn,∴sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
三种方法
等比数列的.判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈n_),则{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈n_),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈n_),则{an}是等比数列.
注:前两种方法也可用来证明一个数列为等比数列.
一、等差数列的有关概念
1.定义:如果一个数列从第2项起,每一项与它的前一项的.差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d(n∈n_,d为常数).
2.等差中项:数列a,a,b成等差数列的充要条件是a=(a+b)/2,其中a叫做a,b的等差中项.
二、等差数列的有关公式
1.通项公式:an=a1+(n-1)d.
2.前n项和公式:sn=na1+n(n-1)/2d+d=(a1+an)n/2.
三、等差数列的性质
1.若,n,p,q∈n_,且+n=p+q,{an}为等差数列,则a+an=ap+aq.
2.在等差数列{an}中,a,a2,a3,a4,…仍为等差数列,公差为d.
3.若{an}为等差数列,则sn,s2n-sn,s3n-s2n,…仍为等差数列,公差为n2d.
4.等差数列的增减性:d>;0时为递增数列,且当a1<0时前n项和sn有最小值.d<0时为递减数列,且当a1>;0时前n项和sn有最大值.
5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成sn=an2+bn,则a=d/2,b=a1-d/2,当d≠0时它表示二次函数,数列{an}的前n项和sn=an2+bn是{an}成等差数列的充要条件.
四、解题方法
1.与前n项和有关的三类问题
(1)知三求二:已知a1、d、n、an、sn中的任意三个,即可求得其余两个,这体现了方程思想.
(2)sn=d/2_n2+(a1-d/2)n=an2+bnd=2a.
(3)利用二次函数的图象确定sn的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.
2.设元与解题的技巧
已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…;
若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.
数学中有很多的概念和公式,只有理解这些概念,才能正确解题。数列中有很多性质和公式,这些是我们做题的基础,很多同学觉得数列的性质公式太多太杂,记不住。其实按照一定方法将数列性质公式进行归纳总结,记住它们就简单多了。下面是小编为大家整理的高中数列基本公式,希望对大家有帮助。
一、高中数列基本公式:
1、一般数列的通项an与前n项和sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:sn=
sn=
sn=
当d≠0时,sn是关于n的二次式且常数项为0;当d=0时(a1≠0),sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,sn=n a1 (是关于n的正比例式);
当q≠1时,sn=
sn=
三、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m - s3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则
3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m - s3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an
bn}、
、
仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
11、{an}为等差数列,则
(c>0)是等比数列。
12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c
1) 是等差数列。
13. 在等差数列
中:
(1)若项数为
,则
(2)若数为
则,
,
14. 在等比数列
中:
(1) 若项数为
,则
(2)若数为
则,
高考数学数列问题解题方法与技巧总结
数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的`自觉性、培养学生主动探索的精神和科学理性的思维方法.
排列组合篇
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.
最后,希望精品小编整理的高考数学各题型解题方法与技巧对您有所帮助,祝同学们学习进步。
最新高考数学数列公式学习总结
数列的基本概念 等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系
an+1-an=d
an=a1+(n-1)d
a,a,b成等差 2a=a+b
m+n=k+l am+an=ak+al
等比数列 常用求和公式
an=a1qn_1
a,g,b成等比 g2=ab
m+n=k+l aman=akal
不等式
不等式的`基本性质 重要不等式
a>b b
a>b,b>c a>c
a>b a+c>b+c
a+b>c a>c-b
a>b,c>d a+c>b+d
a>b,c>0 ac>bc
a>b,c<0 ac
a>b>0,c>d>0 ac
a>b>0 dn>bn(n∈z,n>1)
a>b>0 > (n∈z,n>1)
(a-b)2≥0
a,b∈r a2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b|
证明不等式的基本方法
比较法
(1)要证明不等式a>b(或a
a-b>0(或a-b<0=即可
(2)若b>0,要证a>b,只需证明 ,
要证a
综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法 分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”
高三数学《等差数列的前n项和》知识点总结
一、等差数列及前n项和知识点汇总
注意:
一个推导
利用倒序相加法推导等差数列的前n项和公式:
sn=a1+a2+a3+…+an,①
sn=an+an-1+…+a1,②
①+②得:sn=n(a1+an)/2
两个技巧
已知三个或四个数组成等差数列的`一类问题,要善于设元.
(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.
四种方法
等差数列的判断方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈n_)都成立;
(3)通项公式法:验证an=pn+q;
(4)前n项和公式法:验证sn=an2+bn.
注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.
数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:
首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用sn表示.
基本思路:等差数列中涉及五个量:a1,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)×公差;
数列和公式:sn,= (a1+an)×n÷2;
数列和=(首项+末项)×项数÷2;
项数公式:n= (an+a1)÷d+1;
项数=(末项-首项)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末项-首项)÷(项数-1);
20位用户关注
34位用户关注
71位用户关注
34位用户关注
65位用户关注
22位用户关注
68位用户关注
42位用户关注
63位用户关注
60位用户关注
69位用户关注