> 总结大全 > 教学总结
栏目

初中数学知识点总结-三角函数(八篇)

发布时间:2024-02-13 热度:58

初中数学知识点总结-三角函数

第1篇 初中数学知识点总结-三角函数 2250字

初中数学知识点总结-三角函数

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

推导公式:

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

函数名 正弦 余弦 正切 余切 正割 余割

在平面直角坐标系xoy中,从点o引出一条射线op,设旋转角为θ,设op=r,p点的坐标为(x,y)有

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。

正弦(sin)等于对边比斜边;sina=a/c

余弦(cos)等于邻边比斜边;cosa=b/c

正切(tan)等于对边比邻边;tana=a/b

余切(cot)等于邻边比对边;cota=b/a

正割(sec)等于斜边比邻边;seca=c/b

余割(csc)等于斜边比对边。csca=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(a+b) = sinacosb+cosasinb

sin(a-b) = sinacosb-cosasinb ?

cos(a+b) = cosacosb-sinasinb

cos(a-b) = cosacosb+sinasinb

tan(a+b) = (tana+tanb)/(1-tanatanb)

tan(a-b) = (tana-tanb)/(1+tanatanb)

cot(a+b) = (cotacotb-1)/(cotb+cota)

cot(a-b) = (cotacotb+1)/(cotb-cota)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

三角函数万能公式

万能公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tana+tanb+tanc=tanatanbtanc

证:

a+b=π-c

tan(a+b)=tan(π-c)

(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)

整理可得

tana+tanb+tanc=tanatanbtanc

得证

同样可以得证,当x+y+z=nπ(n∈z)时,该关系式也成立

由tana+tanb+tanc=tanatanbtanc可得出以下结论

(5)cotacotb+cotacotc+cotbcotc=1

(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)

(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc

(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc

万能公式为:

设tan(a/2)=t

sina=2t/(1+t^2) (a≠2kπ+π,k∈z)

tana=2t/(1-t^2) (a≠2kπ+π,k∈z)

cosa=(1-t^2)/(1+t^2) (a≠2kπ+π,且a≠kπ+(π/2) k∈z)

就是说sina.tana.cosa都可以用tan(a/2)来表示,当要求一串函数式最值的.时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

三角函数关系

倒数关系

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以'上弦、中切、下割;左正、右余、中间1'的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α))

tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α

半角的正弦、余弦和正切公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

万能公式

sinα=2tan(α/2)/(1+tan^2(α/2))

cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

tanα=(2tan(α/2))/(1-tan^2(α/2))

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

诱导公式

诱导公式的本质

所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

常用的诱导公式

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα k∈z

cos(2kπ+α)=cosα k∈z

tan(2kπ+α)=tanα k∈z

cot(2kπ+α)=cotα k∈z

公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

第2篇 初中数学三角函数知识点总结 850字

初中数学三角函数知识点总结

锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的'锐角三角函数。

正弦(sin)等于对边比斜边;sina=a/c

余弦(cos)等于邻边比斜边;cosa=b/c

正切(tan)等于对边比邻边;tana=a/b

余切(cot)等于邻边比对边;cota=b/a

正割(sec)等于斜边比邻边;seca=c/b

余割(csc)等于斜边比对边。csca=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(a+b) = sinacosb+cosasinb

sin(a-b) = sinacosb-cosasinb ?

cos(a+b) = cosacosb-sinasinb

cos(a-b) = cosacosb+sinasinb

tan(a+b) = (tana+tanb)/(1-tanatanb)

tan(a-b) = (tana-tanb)/(1+tanatanb)

cot(a+b) = (cotacotb-1)/(cotb+cota)

cot(a-b) = (cotacotb+1)/(cotb-cota)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]si

第3篇 初中数学三角函数公式总结 450字

初中数学三角函数公式总结

三角形中的恒等式是我们经常在考试中遇到的题型,具体的公式内容如下:

三角形与三角函数

1、正弦定理:在三角形中,各边和它所对的`角的正弦的比相等,即a/sina=b/sinb=c/sinc=2r 。(其中r为外接圆的半径)

2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosb + b cosc

3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2—2bc·cosa

4、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a—b)/(a+b)=tan[(a—b)/2]/tan[(a+b)/2]=tan[(a—b)/2]/cot(c/2)

5、三角形中的恒等式:

对于任意非直角三角形中,如三角形abc,总有tana+tanb+tanc=tanatanbtanc

证明:

已知(a+b)=(π—c)

所以tan(a+b)=tan(π—c)

则(tana+tanb)/(1—tanatanb)=(tanπ—tanc)/(1+tanπtanc)

整理可得

tana+tanb+tanc=tanatanbtanc

类似地,我们同样也可以求证:当α+β+γ=nπ(n∈z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ

第4篇 初中数学三角函数知识点总结归纳 400字

初中数学三角函数知识点总结归纳

三角函数解题思路

很多人都认为成绩是用大量的题堆出来的,其实不然,要想提高成绩,我们还需要对所学的知识点进行总结。我们要对它格外重视。解题思想方法有转化思想、数形结合思想、函数思想、方程思想法。全文

锐角三角函数定义

锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。

正弦(sin)等于对边比斜边;sina=a/c

余弦(cos)等于邻边比斜边;cosa=b/c

正切(tan)等于对边比邻边;tana=a/b

余切(cot)等于邻边比对边;cota=b/a

正割(sec)等于斜边比邻边;seca=c/b

余割(csc)等于斜边比对边。csca=c/a

互余角的`三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

第5篇 2023中考备考:初中数学知识点总结-三角函数 2200字

锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。

正弦(sin)等于对边比斜边;sina=a/c

余弦(cos)等于邻边比斜边;cosa=b/c

正切(tan)等于对边比邻边;tana=a/b

余切(cot)等于邻边比对边;cota=b/a

正割(sec)等于斜边比邻边;seca=c/b

余割(csc)等于斜边比对边。csca=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(a+b) = sinacosb+cosasinb

sin(a-b) = sinacosb-cosasinb ?

cos(a+b) = cosacosb-sinasinb

cos(a-b) = cosacosb+sinasinb

tan(a+b) = (tana+tanb)/(1-tanatanb)

tan(a-b) = (tana-tanb)/(1+tanatanb)

cot(a+b) = (cotacotb-1)/(cotb+cota)

cot(a-b) = (cotacotb+1)/(cotb-cota)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

推导公式:

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanatanbtan(a+b)+tana+tanb-tan(a+b)=0

函数名 正弦 余弦 正切 余切 正割 余割

在平面直角坐标系xoy中,从点o引出一条射线op,设旋转角为θ,设op=r,p点的坐标为(x,y)有

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

三角函数万能公式

万能公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tana+tanb+tanc=tanatanbtanc

证:

a+b=π-c

tan(a+b)=tan(π-c)

(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)

整理可得

tana+tanb+tanc=tanatanbtanc

得证

同样可以得证,当x+y+z=nπ(n∈z)时,该关系式也成立

由tana+tanb+tanc=tanatanbtanc可得出以下结论

(5)cotacotb+cotacotc+cotbcotc=1

(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)

(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc

(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc

万能公式为:

设tan(a/2)=t

sina=2t/(1+t^2) (a≠2kπ+π,k∈z)

tana=2t/(1-t^2) (a≠2kπ+π,k∈z)

cosa=(1-t^2)/(1+t^2) (a≠2kπ+π,且a≠kπ+(π/2) k∈z)

就是说sina.tana.cosa都可以用tan(a/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

三角函数关系

倒数关系

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以'上弦、中切、下割;左正、右余、中间1'的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α))

tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α

半角的正弦、余弦和正切公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

万能公式

sinα=2tan(α/2)/(1+tan^2(α/2))

cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

tanα=(2tan(α/2))/(1-tan^2(α/2))

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

诱导公式

诱导公式的本质

所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

常用的诱导公式

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα k∈z

cos(2kπ+α)=cosα k∈z

tan(2kπ+α)=tanα k∈z

cot(2kπ+α)=cotα k∈z

公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

第6篇 初中数学九年级知识点总结锐角三角函数 600字

初中数学九年级知识点总结锐角三角函数

一、目标与要求

通过本章知识点的归纳总结,同学们应该熟练掌握以下内容:

1.通过实例认识直角三角形的边角关系,即锐角三角函数(sina,cosa,tana),记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角。

2.会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角。

3.运用三角函数解决与直角三角形有关的简单的.实际问题。

4.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;初步感受高等数学中的微积分思想。

5.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。

6.能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题。

二、重点与难点

1.重点

(1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,应该牢牢记住。

(2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题。

2.难点

(1)锐角三角函数的概念。

(2)经历探索30°,45°,60°角的三角函数值的过程,锻炼学生观察、分析,解决问题的能力。

三、知识框架

人教版九年级物理电与磁、信息的传递知识点归纳表

第7篇 初中数学三角函数值公式总结 1250字

关于初中数学三角函数值公式总结

初中数学三角函数值公式表(2)

接着上一章节的内容,接下来为大家带来的是三角函数值图表第二部分。

三角函数值图表

温馨提示:上面的表格内容是三角函数值图表第二部分,老师希望大家可以记忆了。

初中数学正方形定理公式

关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式

正方形的特征:

①正方形的四边相等;

②正方形的四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

正方形的判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

初中数学平行四边形定理公式

同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形

平行四边形的`性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分;

平行四边形的判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

初中数学直角三角形定理公式

下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

直角三角形的性质:

①直角三角形的两个锐角互为余角;

②直角三角形斜边上的中线等于斜边的一半;

③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

④直角三角形中30度

角所对的直角边等于斜边的一半;

直角三角形的判定:

①有两个角互余的三角形是直角三角形;

②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

,那么这个三角形是直角三角形(勾股定理的逆定理)。

以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

初中数学等腰三角形的性质定理公式

下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

等腰三角形的性质:

①等腰三角形的两个底角相等;

②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

初中数学三角形定理公式

对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于180度;

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

第8篇 初中数学三角函数值诱导公式总结 1400字

初中数学三角函数值诱导公式总结

初中数学π+α的三角函数值诱导公式

三角函数的诱导公式二所表示的是,π+α的三角函数值与α的三角函数值之间的关系。

公式二

设α为任意角:对于x轴负半轴为起点轴而言

弧度制下的角的表示:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sec(π+α)=-secα

csc(π+α)=-cscα

角度制下的角的表示:

sin(180°+α)=-sinα

cos(180°+α)=-cosα

tan(180°+α)=tanα

cot(180°+α)=cotα

sec(180°+α)=-secα

csc(180°+α)=-cscα

看过上面的公式,我们就知道了其实π+α的三角函数值与α的三角函数值可以轻松地转化。

初中数学正方形定理公式

关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式

正方形的特征:

①正方形的四边相等;

②正方形的四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

正方形的判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

初中数学平行四边形定理公式

同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形

平行四边形的性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分;

平行四边形的判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的`更好的哦。

初中数学直角三角形定理公式

下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

直角三角形的性质:

①直角三角形的两个锐角互为余角;

②直角三角形斜边上的中线等于斜边的一半;

③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

④直角三角形中30度

角所对的直角边等于斜边的一半;

直角三角形的判定:

①有两个角互余的三角形是直角三角形;

②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

,那么这个三角形是直角三角形(勾股定理的逆定理)。

以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

初中数学等腰三角形的性质定理公式

下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

等腰三角形的性质:

①等腰三角形的两个底角相等;

②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

初中数学三角形定理公式

对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于180度;

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

《初中数学知识点总结-三角函数(八篇).doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关总结

最新加入范文

分类查询入口

一键复制